IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v338y2016icp101-121.html
   My bibliography  Save this article

Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix

Author

Listed:
  • Kruse, Stefan
  • Wieczorek, Mareike
  • Jeltsch, Florian
  • Herzschuh, Ulrike

Abstract

Siberian boreal forests are expected to expand northwards in the course of global warming. However, processes of the treeline ecotone transition, as well astiming and related climate feedbacks are still not understood. Here, we present ‘Larix Vegetation Simulator’ LAVESI, an individual-based spatially-explicit model that can simulate Larix gmelinii (Rupr.) Rupr. stand dynamics in an attempt to improve our understanding about past and future treeline movements under changing climates. The relevant processes (growth, seed production and dispersal, establishment and mortality) are incorporated and adjusted to observation data mainly gained from the literature. Results of a local sensitivity analysis support the robustness of the model’s parameterization by giving relatively small sensitivity values. We tested the model by simulating tree stands under modern climate across the whole Taymyr Peninsula, north-central Siberia (c. 64–80° N; 92–119° E). We find tree densities similar to observed forests in the northern to mid-treeline areas, but densities are overestimated in the southern parts of the simulated region. Finally, from a temperature-forcing experiment, we detect that the responses of tree stands lag the hypothetical warming by several decades, until the end of 21st century. With our simulation experiments we demonstrate that the newly-developed model captures the dynamics of the Siberian latitudinal treeline.

Suggested Citation

  • Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
  • Handle: RePEc:eee:ecomod:v:338:y:2016:i:c:p:101-121
    DOI: 10.1016/j.ecolmodel.2016.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016302800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seidl, Rupert & Rammer, Werner & Scheller, Robert M. & Spies, Thomas A., 2012. "An individual-based process model to simulate landscape-scale forest ecosystem dynamics," Ecological Modelling, Elsevier, vol. 231(C), pages 87-100.
    2. Rammig, Anja & Fahse, Lorenz, 2009. "Simulating forest succession after blowdown events: The crucial role of space for a realistic management," Ecological Modelling, Elsevier, vol. 220(24), pages 3555-3564.
    3. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    4. Benjamin D. Stocker & Raphael Roth & Fortunat Joos & Renato Spahni & Marco Steinacher & Soenke Zaehle & Lex Bouwman & Xu-Ri & Iain Colin Prentice, 2013. "Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios," Nature Climate Change, Nature, vol. 3(7), pages 666-672, July.
    5. Cariboni, J. & Gatelli, D. & Liska, R. & Saltelli, A., 2007. "The role of sensitivity analysis in ecological modelling," Ecological Modelling, Elsevier, vol. 203(1), pages 167-182.
    6. Fyllas, Nikolaos M. & Politi, Patrizia I. & Galanidis, Alexandros & Dimitrakopoulos, Panayiotis G. & Arianoutsou, Margarita, 2010. "Simulating regeneration and vegetation dynamics in Mediterranean coniferous forests," Ecological Modelling, Elsevier, vol. 221(11), pages 1494-1504.
    7. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    8. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    9. Richard G. Pearson & Steven J. Phillips & Michael M. Loranty & Pieter S. A. Beck & Theodoros Damoulas & Sarah J. Knight & Scott J. Goetz, 2013. "Shifts in Arctic vegetation and associated feedbacks under climate change," Nature Climate Change, Nature, vol. 3(7), pages 673-677, July.
    10. Valerie A. Barber & Glenn Patrick Juday & Bruce P. Finney, 2000. "Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress," Nature, Nature, vol. 405(6787), pages 668-673, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gloy, Josias & Herzschuh, Ulrike & Kruse, Stefan, 2023. "Evolutionary adaptation of trees and modelled future larch forest extent in Siberia," Ecological Modelling, Elsevier, vol. 478(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    2. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    3. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    4. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    5. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    6. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    7. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    8. Zaatour, Wajdi & Marilleau, Nicolas & Giraudoux, Patrick & Martiny, Nadège & Amara, Abdesslem Ben Haj & Miled, Slimane Ben, 2021. "An agent-based model of a cutaneous leishmaniasis reservoir host, Meriones shawi," Ecological Modelling, Elsevier, vol. 443(C).
    9. Huber, Nica & Bugmann, Harald & Lafond, Valentine, 2018. "Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions," Ecological Modelling, Elsevier, vol. 368(C), pages 377-390.
    10. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2014. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 288(C), pages 195-202.
    11. Nakagawa, Yoshiaki & Yokozawa, Masayuki & Ito, Akihiko & Hara, Toshihiko, 2017. "Effectively tuning plant growth models with different spatial complexity: A statistical perspective," Ecological Modelling, Elsevier, vol. 361(C), pages 95-112.
    12. Sujii, Patricia S. & Nagai, Micael E. & Zucchi, Maria I. & Brancalion, Pedro H.S. & James, Patrick M.A., 2019. "A genetic approach for simulating persistence of reintroduced tree species populations in restored forests," Ecological Modelling, Elsevier, vol. 403(C), pages 35-43.
    13. Kautz, Markus & Schopf, Reinhard & Imron, Muhammad Ali, 2014. "Individual traits as drivers of spatial dispersal and infestation patterns in a host–bark beetle system," Ecological Modelling, Elsevier, vol. 273(C), pages 264-276.
    14. Frank, Béatrice M. & Baret, Philippe V., 2013. "Simulating brown trout demogenetics in a river/nursery brook system: The individual-based model DemGenTrout," Ecological Modelling, Elsevier, vol. 248(C), pages 184-202.
    15. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2015. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 306(C), pages 318-325.
    16. Chunyang Liu & Chao Liu & Qianqian Sun & Tianyang Chen & Ya Fan, 2022. "Vegetation Dynamics and Climate from A Perspective of Lag-Effect: A Study Case in Loess Plateau, China," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    17. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    18. Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    19. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    20. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:338:y:2016:i:c:p:101-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.