IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v268y2013icp64-77.html
   My bibliography  Save this article

Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat

Author

Listed:
  • Kanapaux, William
  • Kiker, Gregory A.

Abstract

Botany Bay Plantation Wildlife Management Area is one of only four known natural nesting sites for least terns (Sternula antillarum) on the South Carolina coast, and more than 20,000 people visit the 3-mile stretch of beach each nesting season since it opened to the public in 2008. We developed a simulation model for the adaptive management of human disturbance on nesting habitat for least terns, which is described using the ODD (Overview, Design Concepts, and Details) protocol. The simulation uses the Questions and Decisions (QnD) system framework, an object-oriented modeling approach that emphasizes interactions among key ecological and social components. The model is designed to explore the potential results of management actions and identify key indicators for future monitoring. Initial model parameters were developed from existing literature, expert opinion and on-site ecological observations as few baseline data were available for the recently opened site. In addition, substantial uncertainty surrounded the nesting behavior of least terns related to productivity levels, responses to human disturbance, and overwash tides. In order to test model assumptions and performance, parameters are assigned stochastic probability distributions made explicit to wildlife managers and can be updated as additional monitoring data become available. Simulation results suggest that Botany Bay colonies are at significant risk of collapse. Monte Carlo simulations of the model (n=500) show that current management practices result in a median productivity of 0.08 fledglings per breeding adult, well below the minimum productivity threshold of 0.13 needed to encourage site fidelity. But closing one particular section of beach during the nesting season would result in a global median productivity of 0.26. A sensitivity analysis identified one variable in particular as important to monitor for reducing uncertainty in model results: the duration of tern defense response from human disturbance and the variation of this response among spatial units. These simulation results are intended to initiate an ongoing and adaptive monitoring program for improving colony productivity at the site.

Suggested Citation

  • Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
  • Handle: RePEc:eee:ecomod:v:268:y:2013:i:c:p:64-77
    DOI: 10.1016/j.ecolmodel.2013.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013003852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Confalonieri, R. & Bellocchi, G. & Bregaglio, S. & Donatelli, M. & Acutis, M., 2010. "Comparison of sensitivity analysis techniques: A case study with the rice model WARM," Ecological Modelling, Elsevier, vol. 221(16), pages 1897-1906.
    2. Railsback, Steven F. & Johnson, Matthew D., 2011. "Pattern-oriented modeling of bird foraging and pest control in coffee farms," Ecological Modelling, Elsevier, vol. 222(18), pages 3305-3319.
    3. Gregory A. Kiker & Rohit Thummalapalli, 2009. "How2QnD: Design and Construction of a Game-Style, Environmental Simulation Engine and Interface Using UML, XML, and Java," Springer Optimization and Its Applications, in: Panos M. Pardalos & Petraq J. Papajorgji (ed.), Advances in Modeling Agricultural Systems, pages 103-129, Springer.
    4. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    5. Ilke Borowski & Matt Hare, 2007. "Exploring the Gap Between Water Managers and Researchers: Difficulties of Model-Based Tools to Support Practical Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1049-1074, July.
    6. Cariboni, J. & Gatelli, D. & Liska, R. & Saltelli, A., 2007. "The role of sensitivity analysis in ecological modelling," Ecological Modelling, Elsevier, vol. 203(1), pages 167-182.
    7. Tibor F. Liska, 2007. "The Liska model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 29(3), pages 363-381, December.
    8. Ascough, J.C. & Maier, H.R. & Ravalico, J.K. & Strudley, M.W., 2008. "Future research challenges for incorporation of uncertainty in environmental and ecological decision-making," Ecological Modelling, Elsevier, vol. 219(3), pages 383-399.
    9. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    2. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    3. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    4. Gilardelli, Carlo & Confalonieri, Roberto & Cappelli, Giovanni Alessandro & Bellocchi, Gianni, 2018. "Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change," Ecological Modelling, Elsevier, vol. 368(C), pages 1-14.
    5. Priyadarshi, Anupam & Chandra, Ram & Kishi, Michio J. & Smith, S.Lan & Yamazaki, Hidekatsu, 2022. "Understanding plankton ecosystem dynamics under realistic micro-scale variability requires modeling at least three trophic levels," Ecological Modelling, Elsevier, vol. 467(C).
    6. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Tomback, Diana F. & Lorenz, Teresa & Marceau, Danielle, 2017. "Energetic behavioural-strategy prioritization of Clark’s nutcrackers in whitebark pine communities: An agent-based modeling approach," Ecological Modelling, Elsevier, vol. 354(C), pages 123-139.
    7. Melbourne-Thomas, J. & Johnson, C.R. & Fulton, E.A., 2011. "Characterizing sensitivity and uncertainty in a multiscale model of a complex coral reef system," Ecological Modelling, Elsevier, vol. 222(18), pages 3320-3334.
    8. Cartwright, Samantha J. & Bowgen, Katharine M. & Collop, Catherine & Hyder, Kieran & Nabe-Nielsen, Jacob & Stafford, Richard & Stillman, Richard A. & Thorpe, Robert B. & Sibly, Richard M., 2016. "Communicating complex ecological models to non-scientist end users," Ecological Modelling, Elsevier, vol. 338(C), pages 51-59.
    9. Hanqing Ma & Chunfeng Ma & Xin Li & Wenping Yuan & Zhengjia Liu & Gaofeng Zhu, 2020. "Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    10. Kautz, Markus & Schopf, Reinhard & Imron, Muhammad Ali, 2014. "Individual traits as drivers of spatial dispersal and infestation patterns in a host–bark beetle system," Ecological Modelling, Elsevier, vol. 273(C), pages 264-276.
    11. Chu-Agor, M.L. & Muñoz-Carpena, R. & Kiker, G.A. & Aiello-Lammens, M.E. & Akçakaya, H.R. & Convertino, M. & Linkov, I., 2012. "Simulating the fate of Florida Snowy Plovers with sea-level rise: Exploring research and management priorities with a global uncertainty and sensitivity analysis perspective," Ecological Modelling, Elsevier, vol. 224(1), pages 33-47.
    12. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    13. Gregory Hill & Steven Kolmes & Michael Humphreys & Rebecca McLain & Eric T. Jones, 2019. "Using decision support tools in multistakeholder environmental planning: restorative justice and subbasin planning in the Columbia River Basin," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(2), pages 170-186, June.
    14. Katherine A. Zeller & David W. Wattles & Javan M. Bauder & Stephen DeStefano, 2020. "Forecasting Seasonal Habitat Connectivity in a Developing Landscape," Land, MDPI, vol. 9(7), pages 1-20, July.
    15. Ascensão, Fernando & Clevenger, Anthony & Santos-Reis, Margarida & Urbano, Paulo & Jackson, Nathan, 2013. "Wildlife–vehicle collision mitigation: Is partial fencing the answer? An agent-based model approach," Ecological Modelling, Elsevier, vol. 257(C), pages 36-43.
    16. Wernsdörfer, H. & Rossi, V. & Cornu, G. & Oddou-Muratorio, S. & Gourlet-Fleury, S., 2008. "Impact of uncertainty in tree mortality on the predictions of a tropical forest dynamics model," Ecological Modelling, Elsevier, vol. 218(3), pages 290-306.
    17. Daniel C. Kenny & Juan Castilla-Rho, 2022. "No Stakeholder Is an Island: Human Barriers and Enablers in Participatory Environmental Modelling," Land, MDPI, vol. 11(3), pages 1-26, February.
    18. Pal, Saheb & Ghosh, Indrajit, 2023. "Dynamics of a coupled socio-environmental model: An application to global CO2 emissions," Ecological Modelling, Elsevier, vol. 478(C).
    19. Sánchez-Clavijo, Lina M. & Hearns, Jessica & Quintana-Ascencio, Pedro F., 2016. "Modeling the effect of habitat selection mechanisms on population responses to landscape structure," Ecological Modelling, Elsevier, vol. 328(C), pages 99-107.
    20. Zaatour, Wajdi & Marilleau, Nicolas & Giraudoux, Patrick & Martiny, Nadège & Amara, Abdesslem Ben Haj & Miled, Slimane Ben, 2021. "An agent-based model of a cutaneous leishmaniasis reservoir host, Meriones shawi," Ecological Modelling, Elsevier, vol. 443(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:268:y:2013:i:c:p:64-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.