IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i14p2262-2275.html
   My bibliography  Save this article

Modelling carbon and nitrogen dynamics in forest ecosystems of Central Russia under different climate change scenarios and forest management regimes

Author

Listed:
  • Shanin, Vladimir N.
  • Komarov, Alexander S.
  • Mikhailov, Alexey V.
  • Bykhovets, Sergei S.

Abstract

The individual-based stand-level model EFIMOD was used for large-scale simulations using standard data on forest inventories as model inputs. The model was verified for the case-study of field observations, and possible sources of uncertainties were analysed. The approach developed kept the ability for fine-tuning to account for spatial discontinuity in the simulated area. Several forest management regimes were simulated as well as forest wildfires and climate changes. The greatest carbon and nitrogen accumulations were observed for the regime without cuttings. It was shown that cuttings and wildfires strongly influence the processes of carbon and nitrogen accumulations in both soil and forest vegetation. Modelling also showed that the increase in annual average temperatures resulted in the partial relocation of carbon and nitrogen stocks from soil to plant biomass. However, forest management, particularly harvesting, has a greater effect on the dynamics of forest ecosystems than the prescribed climate change.

Suggested Citation

  • Shanin, Vladimir N. & Komarov, Alexander S. & Mikhailov, Alexey V. & Bykhovets, Sergei S., 2011. "Modelling carbon and nitrogen dynamics in forest ecosystems of Central Russia under different climate change scenarios and forest management regimes," Ecological Modelling, Elsevier, vol. 222(14), pages 2262-2275.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:14:p:2262-2275
    DOI: 10.1016/j.ecolmodel.2010.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010006149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larocque, Guy R. & Bhatti, Jagtar S. & Boutin, Robert & Chertov, Oleg, 2008. "Uncertainty analysis in carbon cycle models of forest ecosystems: Research needs and development of a theoretical framework to estimate error propagation," Ecological Modelling, Elsevier, vol. 219(3), pages 400-412.
    2. R. B. Myneni & C. D. Keeling & C. J. Tucker & G. Asrar & R. R. Nemani, 1997. "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature, Nature, vol. 386(6626), pages 698-702, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanin, Vladimir & Komarov, Alexander & Khoraskina, Yulia & Bykhovets, Sergey & Linkosalo, Tapio & Mäkipää, Raisa, 2013. "Carbon turnover in mixed stands: Modelling possible shifts under climate change," Ecological Modelling, Elsevier, vol. 251(C), pages 232-245.
    2. Komarov, Alexander & Chertov, Oleg & Bykhovets, Sergey & Shaw, Cindy & Nadporozhskaya, Marina & Frolov, Pavel & Shashkov, Maxim & Shanin, Vladimir & Grabarnik, Pavel & Priputina, Irina & Zubkova, Elen, 2017. "Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing," Ecological Modelling, Elsevier, vol. 345(C), pages 113-124.
    3. Shuman, Jacquelyn K. & Shugart, Herman H. & Krankina, Olga N., 2014. "Testing individual-based models of forest dynamics: Issues and an example from the boreal forests of Russia," Ecological Modelling, Elsevier, vol. 293(C), pages 102-110.
    4. Qifei Han & Geping Luo & Chaofan Li & Shoubo Li, 2018. "Response of Carbon Dynamics to Climate Change Varied among Different Vegetation Types in Central Asia," Sustainability, MDPI, vol. 10(9), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    2. F. Nelson & O. Anisimov & N. Shiklomanov, 2002. "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 203-225, July.
    3. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Craig D. Idso, 2001. "Earth's Rising Atmospheric Co2 Concentration: Impacts on the Biosphere," Energy & Environment, , vol. 12(4), pages 287-310, July.
    5. Jörg Kaduk & Sietse Los, 2011. "Predicting the time of green up in temperate and boreal biomes," Climatic Change, Springer, vol. 107(3), pages 277-304, August.
    6. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    7. Lausch, Angela & Salbach, Christoph & Schmidt, Andreas & Doktor, Daniel & Merbach, Ines & Pause, Marion, 2015. "Deriving phenology of barley with imaging hyperspectral remote sensing," Ecological Modelling, Elsevier, vol. 295(C), pages 123-135.
    8. Mette, Tobias & Albrecht, Axel & Ammer, Christian & Biber, Peter & Kohnle, Ulrich & Pretzsch, Hans, 2009. "Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir–Norway spruce stands in South-West Germany," Ecological Modelling, Elsevier, vol. 220(13), pages 1670-1680.
    9. Shi, Yusheng & Sasai, Takahiro & Yamaguchi, Yasushi, 2014. "Spatio-temporal evaluation of carbon emissions from biomass burning in Southeast Asia during the period 2001–2010," Ecological Modelling, Elsevier, vol. 272(C), pages 98-115.
    10. Zongxing, Li & Qi, Feng & Zongjie, Li & Xufeng, Wang & Juan, Gui & Baijuan, Zhang & Yuchen, Li & Xiaohong, Deng & Jian, Xue & Wende, Gao & Anle, Yang & Fusen, Nan & Pengfei, Liang, 2021. "Reversing conflict between humans and the environment - The experience in the Qilian Mountains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Kathuroju, Naven & White, Michael A. & Symanzik, Jürgen & Schwartz, Mark D. & Powell, James A. & Nemani, Ramakrishna R., 2007. "On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models," Ecological Modelling, Elsevier, vol. 201(2), pages 144-156.
    12. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2014. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 288(C), pages 195-202.
    13. Mo, Yu & Momen, Bahram & Kearney, Michael S., 2015. "Quantifying moderate resolution remote sensing phenology of Louisiana coastal marshes," Ecological Modelling, Elsevier, vol. 312(C), pages 191-199.
    14. Richard Tol, 2013. "The economic impact of climate change in the 20th and 21st centuries," Climatic Change, Springer, vol. 117(4), pages 795-808, April.
    15. Yangyang Wu & Lei Gu & Siliang Li & Chunzi Guo & Xiaodong Yang & Yue Xu & Fujun Yue & Haijun Peng & Yinchuan Chen & Jinli Yang & Zhenghua Shi & Guangjie Luo, 2022. "Responses of NDVI to Climate Change and LUCC along Large-Scale Transportation Projects in Fragile Karst Areas, SW China," Land, MDPI, vol. 11(10), pages 1-16, October.
    16. Shanin, Vladimir & Komarov, Alexander & Khoraskina, Yulia & Bykhovets, Sergey & Linkosalo, Tapio & Mäkipää, Raisa, 2013. "Carbon turnover in mixed stands: Modelling possible shifts under climate change," Ecological Modelling, Elsevier, vol. 251(C), pages 232-245.
    17. Zhou, Decheng & Zhao, Shuqing & Liu, Shuguang & Zhang, Liangxia, 2014. "Modeling the effects of the Sloping Land Conversion Program on terrestrial ecosystem carbon dynamics in the Loess Plateau: A case study with Ansai County, Shaanxi province, China," Ecological Modelling, Elsevier, vol. 288(C), pages 47-54.
    18. Ken Mix & Vicente Lopes & Walter Rast, 2012. "Growing season expansion and related changes in monthly temperature and growing degree days in the Inter-Montane Desert of the San Luis Valley, Colorado," Climatic Change, Springer, vol. 114(3), pages 723-744, October.
    19. Rongjun Wu & Qi Li, 2021. "Assessing the soil moisture drought index for agricultural drought monitoring based on green vegetation fraction retrieval methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 499-518, August.
    20. Andrew MacLachlan & Eloise Biggs & Gareth Roberts & Bryan Boruff, 2017. "Urban Growth Dynamics in Perth, Western Australia: Using Applied Remote Sensing for Sustainable Future Planning," Land, MDPI, vol. 6(1), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:14:p:2262-2275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.