IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i1p51-59.html
   My bibliography  Save this article

How does the spatial structure of habitat loss affect the eco-epidemic dynamics?

Author

Listed:
  • Su, Min
  • Hui, Cang
  • Zhang, Yanyu
  • Li, Zizhen

Abstract

Habitat loss is considered as one of the primary causes of species extinction, especially for a species that also suffers from an epidemic disease. Little attention has been paid to the combined effect of habitat loss and epidemic transmission on the species spatiotemporal dynamics. Here, a spatial model of the parasite–host/prey–predator eco-epidemiological system with habitat loss was studied. Habitat patches in the model, instead of undergoing a random loss, were spatially clustered by different degrees. Not only the quantity of habitat loss but also its clustering degree was shown to affect the equilibrium of the system. The infection rate and the probability of successful predation were keys to determine the spatial patterns of species. The epidemic disease is more likely to break out if only a small amount of suitable patches were lost. Counter-intuitively, infected preys are more sensitive to habitat loss than predators if the lost patches are highly clustered. This result is new to eco-epidemiology and implies a possibility of using spatial arrangement of suitable (or unsuitable) patches to control the spread of epidemics in the ecological system.

Suggested Citation

  • Su, Min & Hui, Cang & Zhang, Yanyu & Li, Zizhen, 2009. "How does the spatial structure of habitat loss affect the eco-epidemic dynamics?," Ecological Modelling, Elsevier, vol. 220(1), pages 51-59.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:1:p:51-59
    DOI: 10.1016/j.ecolmodel.2008.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438000800433X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Saadi, N. & Bah, A., 2007. "An individual-based model for studying the aggregation behavior in phytoplankton," Ecological Modelling, Elsevier, vol. 204(1), pages 193-212.
    2. Szwabiński, Janusz & Pe¸kalski, Andrzej, 2006. "Effects of random habitat destruction in a predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 59-70.
    3. Su, Min & Zhang, Yanyu & Hui, Cang & Li, Zizhen, 2008. "The effect of migration on the spatial structure of intraguild predation in metapopulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4195-4203.
    4. Bommarco, Riccardo & Firle, Sascha O. & Ekbom, Barbara, 2007. "Outbreak suppression by predators depends on spatial distribution of prey," Ecological Modelling, Elsevier, vol. 201(2), pages 163-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schimit, P.H.T. & Monteiro, L.H.A., 2010. "Who should wear mask against airborne infections? Altering the contact network for controlling the spread of contagious diseases," Ecological Modelling, Elsevier, vol. 221(9), pages 1329-1332.
    2. Hui, Cang, 2011. "Forecasting population trend from the scaling pattern of occupancy," Ecological Modelling, Elsevier, vol. 222(3), pages 442-446.
    3. Ceddia, M Graziano, 2010. "Managing infectious diseases over connected populations: a non-convex optimal control," MPRA Paper 22344, University Library of Munich, Germany, revised 2010.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Min & Chen, Ge & Yang, Yuanqi, 2019. "Dynamics of host-parasite interactions with horizontal and vertical transmissions in spatially heterogeneous environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 452-458.
    2. Jian, Fuji & Jayas, Digvir S. & White, Noel D.G. & Smith, E.A., 2008. "Numerical analysis and parameter estimation technique for insect population redistribution models," Ecological Modelling, Elsevier, vol. 211(1), pages 47-56.
    3. Ramanantoanina, A. & Hui, C. & Ouhinou, A., 2011. "Effects of density-dependent dispersal behaviours on the speed and spatial patterns of range expansion in predator–prey metapopulations," Ecological Modelling, Elsevier, vol. 222(19), pages 3524-3530.
    4. Bouderbala, Ilhem & El Saadi, Nadjia & Bah, Alassane & Auger, Pierre, 2019. "A simulation study on how the resource competition and anti-predator cooperation impact the motile-phytoplankton groups’ formation under predation stress," Ecological Modelling, Elsevier, vol. 391(C), pages 16-28.
    5. Piñol, Josep & Espadaler, Xavier & Pérez, Nicolás & Beven, Keith, 2009. "Testing a new model of aphid abundance with sedentary and non-sedentary predators," Ecological Modelling, Elsevier, vol. 220(19), pages 2469-2480.
    6. Gwizdalla, Tomasz M., 2008. "Gallagher index for sociophysical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2937-2951.
    7. Zhang, Wei & Swinton, Scott M., 2009. "Incorporating natural enemies in an economic threshold for dynamically optimal pest management," Ecological Modelling, Elsevier, vol. 220(9), pages 1315-1324.
    8. Bordj, Naziha & Saadi, Nadjia El, 2022. "Moment approximation of individual-based models. Application to the study of the spatial dynamics of phytoplankton populations," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    9. Hellweger, Ferdi L. & Bucci, Vanni, 2009. "A bunch of tiny individuals—Individual-based modeling for microbes," Ecological Modelling, Elsevier, vol. 220(1), pages 8-22.
    10. de Souza, A.A. & Martins, S.G.F. & Zacarias, M.S., 2009. "Computer simulation applied to the biological control of the insect Aphis gossypii for the parasitoid Lysiphlebus testaceipes," Ecological Modelling, Elsevier, vol. 220(6), pages 756-763.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:1:p:51-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.