IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v72y2014icp282-297.html
   My bibliography  Save this article

Discrete particle swarm optimization for constructing uniform design on irregular regions

Author

Listed:
  • Chen, Ray-Bing
  • Hsu, Yen-Wen
  • Hung, Ying
  • Wang, Weichung

Abstract

Central composite discrepancy (CCD) has been proposed to measure the uniformity of a design over irregular experimental region. However, how CCD-based optimal uniform designs can be efficiently computed remains a challenge. Focusing on this issues, we proposed a particle swarm optimization-based algorithm to efficiently find optimal uniform designs with respect to the CCD criterion. Parallel computation techniques based on state-of-the-art graphic processing unit (GPU) are employed to accelerate the computations. Several two- to five-dimensional benchmark problems are used to illustrate the advantages of the proposed algorithms. By solving a real application in data center thermal management, we further demonstrate that the proposed algorithm can be extended to incorporate desirable space-filling properties, such as the non-collapsing property.

Suggested Citation

  • Chen, Ray-Bing & Hsu, Yen-Wen & Hung, Ying & Wang, Weichung, 2014. "Discrete particle swarm optimization for constructing uniform design on irregular regions," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 282-297.
  • Handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:282-297
    DOI: 10.1016/j.csda.2013.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003691
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009. "Nested Maximin Latin Hypercube Designs," Discussion Paper 2009-06, Tilburg University, Center for Economic Research.
    2. Lin, D.K.J. & Sharpe, C. & Winker, P., 2010. "Optimized U-type designs on flexible regions," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1505-1515, June.
    3. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    4. Hung, Ying, 2011. "Adaptive Probability-Based Latin Hypercube Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 213-219.
    5. Chuang, S.C. & Hung, Y.C., 2010. "Uniform design over general input domains with applications to target region estimation in computer experiments," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 219-232, January.
    6. Paterlini, Sandra & Krink, Thiemo, 2006. "Differential evolution and particle swarm optimisation in partitional clustering," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1220-1247, March.
    7. Ying Hung & Yasuo Amemiya & Chien-Fu Jeff Wu, 2010. "Probability-based Latin hypercube designs for slid-rectangular regions," Biometrika, Biometrika Trust, vol. 97(4), pages 961-968.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen J. Walsh & John J. Borkowski, 2022. "Improved G -Optimal Designs for Small Exact Response Surface Scenarios: Fast and Efficient Generation via Particle Swarm Optimization," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    2. Dongying Wang & Sumin Wang, 2023. "Constructing Optimal Designs for Order-of-Addition Experiments Using a Hybrid Algorithm," Mathematics, MDPI, vol. 11(11), pages 1-20, May.
    3. Xiao, Qian & Xu, Hongquan, 2021. "A mapping-based universal Kriging model for order-of-addition experiments in drug combination studies," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, D.K.J. & Sharpe, C. & Winker, P., 2010. "Optimized U-type designs on flexible regions," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1505-1515, June.
    2. Lyra, M. & Paha, J. & Paterlini, S. & Winker, P., 2010. "Optimization heuristics for determining internal rating grading scales," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2693-2706, November.
    3. Ray-Bing Chen & Ying-Chao Hung & Weichung Wang & Sung-Wei Yen, 2013. "Contour estimation via two fidelity computer simulators under limited resources," Computational Statistics, Springer, vol. 28(4), pages 1813-1834, August.
    4. Doumpos, M. & Marinakis, Y. & Marinaki, M. & Zopounidis, C., 2009. "An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method," European Journal of Operational Research, Elsevier, vol. 199(2), pages 496-505, December.
    5. Blueschke-Nikolaeva, V. & Blueschke, D. & Neck, R., 2012. "Optimal control of nonlinear dynamic econometric models: An algorithm and an application," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3230-3240.
    6. Weiyan Mu & Chengxin Liu & Shifeng Xiong, 2023. "Nested Maximum Entropy Designs for Computer Experiments," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    7. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Peyman Bahrami & Farzan Sahari Moghaddam & Lesley A. James, 2022. "A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering," Energies, MDPI, vol. 15(14), pages 1-32, July.
    9. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    10. S.-C. Horng & S.-Y. Lin, 2009. "Ordinal Optimization of G/G/1/K Polling Systems with k-Limited Service Discipline," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 213-231, February.
    11. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    12. Zhang, Mei & Zhou, Yong-Dao, 2016. "Spherical discrepancy for designs on hyperspheres," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 226-234.
    13. Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential evolution and combinatorial search for constrained index-tracking," Annals of Operations Research, Springer, vol. 172(1), pages 153-176, November.
    14. Denis D. Chesalin & Roman Y. Pishchalnikov, 2022. "Searching for a Unique Exciton Model of Photosynthetic Pigment–Protein Complexes: Photosystem II Reaction Center Study by Differential Evolution," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
    15. Krink, Thiemo & Paterlini, Sandra & Resti, Andrea, 2008. "The optimal structure of PD buckets," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2275-2286, October.
    16. Savin, Ivan & Egbetokun, Abiodun, 2016. "Emergence of innovation networks from R&D cooperation with endogenous absorptive capacity," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 82-103.
    17. Baragona Roberto & Cucina Domenico, 2013. "Multivariate Self-Exciting Threshold Autoregressive Modeling by Genetic Algorithms," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(1), pages 3-21, February.
    18. Chipman, J. & Winker, P., 2005. "Optimal aggregation of linear time series models," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 311-331, April.
    19. Florios, Kostas, 2018. "A hyperplanes intersection simulated annealing algorithm for maximum score estimation," Econometrics and Statistics, Elsevier, vol. 8(C), pages 37-55.
    20. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:282-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.