Advanced Search
MyIDEAS: Login

Estimation in linear regression models with measurement errors subject to single-indexed distortion


Author Info

  • Zhang, Jun
  • Gai, Yujie
  • Wu, Ping
Registered author(s):


    In this paper, we consider statistical inference for linear regression models when neither the response nor the predictors can be directly observed, but are measured with errors in a multiplicative fashion and distorted as single index models of observable confounding variables. We propose a semiparametric profile least squares estimation procedure to estimate the single index. Then we develop a global weighted least squares estimation procedure for parameters of linear regression models via the varying coefficient models. Asymptotic properties of the proposed estimators are established. The results combined with consistent estimators for the asymptotic variance can be employed to test whether the targeted parameters in the single index and linear regression models are significant. Finite-sample performance of the proposed estimators is assessed by simulation experiments. The proposed methods are also applied to a dataset from a Pima Indian diabetes data study.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 59 (2013)
    Issue (Month): C ()
    Pages: 103-120

    as in new window
    Handle: RePEc:eee:csdana:v:59:y:2013:i:c:p:103-120

    Contact details of provider:
    Web page:

    Related research

    Keywords: Confounding variables; Measurement errors; Profile least squares; Single index; Varying coefficient models;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Zhang, Jun & Feng, Zhenghui & Zhou, Bu, 2014. "A revisit to correlation analysis for distortion measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 116-129.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:59:y:2013:i:c:p:103-120. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.