Advanced Search
MyIDEAS: Login

An EM algorithm for continuous-time bivariate Markov chains

Contents:

Author Info

  • Mark, Brian L.
  • Ephraim, Yariv
Registered author(s):

    Abstract

    We study properties and parameter estimation of a finite-state, homogeneous, continuous-time, bivariate Markov chain. Only one of the two processes of the bivariate Markov chain is assumed observable. The general form of the bivariate Markov chain studied here makes no assumptions on the structure of the generator of the chain. Consequently, simultaneous jumps of the observable and underlying processes are possible, neither process is necessarily Markov, and the time between jumps of each of the two processes has a phase-type distribution. Examples of bivariate Markov chains include the Markov modulated Poisson process and the batch Markovian arrival process when appropriate modulo counts are used in each case. We develop an expectation–maximization (EM) procedure for estimating the generator of a bivariate Markov chain, and we demonstrate its performance. The procedure does not rely on any numerical integration or sampling scheme of the continuous-time bivariate Markov chain. The proposed EM algorithm is equally applicable to multivariate Markov chains.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002915
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 57 (2013)
    Issue (Month): 1 ()
    Pages: 504-517

    as in new window
    Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:504-517

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords: Parameter estimation; EM algorithm; Continuous-time bivariate Markov chain; Markov modulated processes;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Leroux, Brian G., 1992. "Maximum-likelihood estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 127-143, February.
    2. Erhan Çinlar, 1975. "Exceptional Paper--Markov Renewal Theory: A Survey," Management Science, INFORMS, vol. 21(7), pages 727-752, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:504-517. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.