Advanced Search
MyIDEAS: Login to save this article or follow this journal

Bayesian analysis of the patterns of biological susceptibility via reversible jump MCMC sampling

Contents:

Author Info

  • Liu, Rui-Yin
  • Tao, Jian
  • Shi, Ning-Zhong
  • He, Xuming
Registered author(s):

    Abstract

    In some biological experiments, it is quite common that laboratory subjects differ in their patterns of susceptibility to a treatment. Finite mixture models are useful in those situations. In this paper we model the number of components and the component parameters jointly, and base inference about these quantities on their posterior probabilities, making use of the reversible jump Markov chain Monte Carlo methods. In particular, we apply the methodology to the analysis of univariate normal mixtures with multidimensional parameters, using a hierarchical prior model that allows weak priors while avoiding improper priors in the mixture context. The practical significance of the proposed method is illustrated with a dose-response data set.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8V-518TY3H-5/2/3912c426ede5ea6a7eecf5a784a37718
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 55 (2011)
    Issue (Month): 3 (March)
    Pages: 1498-1508

    as in new window
    Handle: RePEc:eee:csdana:v:55:y:2011:i:3:p:1498-1508

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords: Mixture normal models Model selection Classification Markov chain Monte Carlo method Reversible jump algorithms;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Tao, Jian & Shi, Ning-Zhong & Lee, S.-Y.Sik-Yum, 2004. "Drug risk assessment with determining the number of sub-populations under finite mixture normal models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 661-676, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Drovandi, Christopher C. & Pettitt, Anthony N. & Henderson, Robert D. & McCombe, Pamela A., 2014. "Marginal reversible jump Markov chain Monte Carlo with application to motor unit number estimation," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 128-146.
    2. Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:3:p:1498-1508. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.