IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p644-654.html
   My bibliography  Save this article

The bivariate generalized linear failure rate distribution and its multivariate extension

Author

Listed:
  • Sarhan, Ammar M.
  • Hamilton, David C.
  • Smith, Bruce
  • Kundu, Debasis

Abstract

The two-parameter linear failure rate distribution has been used quite successfully to analyze lifetime data. Recently, a new three-parameter distribution, known as the generalized linear failure rate distribution, has been introduced by exponentiating the linear failure rate distribution. The generalized linear failure rate distribution is a very flexible lifetime distribution, and the probability density function of the generalized linear failure rate distribution can take different shapes. Its hazard function also can be increasing, decreasing and bathtub shaped. The main aim of this paper is to introduce a bivariate generalized linear failure rate distribution, whose marginals are generalized linear failure rate distributions. It is obtained using the same approach as was adopted to obtain the Marshall-Olkin bivariate exponential distribution. Different properties of this new distribution are established. The bivariate generalized linear failure rate distribution has five parameters and the maximum likelihood estimators are obtained using the EM algorithm. A data set is analyzed for illustrative purposes. Finally, some generalizations to the multivariate case are proposed.

Suggested Citation

  • Sarhan, Ammar M. & Hamilton, David C. & Smith, Bruce & Kundu, Debasis, 2011. "The bivariate generalized linear failure rate distribution and its multivariate extension," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 644-654, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:644-654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00250-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Gupta, Rameshwar D., 2009. "Bivariate generalized exponential distribution," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 581-593, April.
    2. Sarhan, Ammar M. & Balakrishnan, N., 2007. "A new class of bivariate distributions and its mixture," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1508-1527, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Franco & Juana-María Vivo & Debasis Kundu, 2020. "A Generator of Bivariate Distributions: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(10), pages 1-30, October.
    2. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    3. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    4. Attila Csenki, 2015. "A Differential Equation for a Class of Discrete Lifetime Distributions with an Application in Reliability," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 647-660, September.
    5. M. S. Eliwa & M. El-Morshedy, 2019. "Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application," Annals of Data Science, Springer, vol. 6(1), pages 39-60, March.
    6. Muhammed, Hiba Z., 2020. "On a bivariate generalized inverted Kumaraswamy distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    2. Muhammed, Hiba Z., 2020. "On a bivariate generalized inverted Kumaraswamy distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. S. Mirhosseini & M. Amini & D. Kundu & A. Dolati, 2015. "On a new absolutely continuous bivariate generalized exponential distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 61-83, March.
    4. Kundu, Debasis & Gupta, Arjun K., 2014. "On bivariate Weibull-Geometric distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 19-29.
    5. Muhammad Mohsin & Hannes Kazianka & Jürgen Pilz & Albrecht Gebhardt, 2014. "A new bivariate exponential distribution for modeling moderately negative dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 123-148, March.
    6. M. S. Eliwa & M. El-Morshedy, 2019. "Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application," Annals of Data Science, Springer, vol. 6(1), pages 39-60, March.
    7. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    8. Lee, Hyunju & Cha, Ji Hwan, 2014. "On construction of general classes of bivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 151-159.
    9. Franco, Manuel & Vivo, Juana-María, 2010. "A multivariate extension of Sarhan and Balakrishnan's bivariate distribution and its ageing and dependence properties," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 491-499, March.
    10. Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.
    11. Surya, Budhi Arta, 2022. "Conditional multivariate distributions of phase-type for a finite mixture of Markov jump processes given observations of sample path," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    12. Ji Hwan Cha & Massimiliano Giorgio, 2018. "Modelling of Marginally Regular Bivariate Counting Process and its Application to Shock Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1137-1154, December.
    13. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    14. Guan, Qiang & Tang, Yincai & Xu, Ancha, 2013. "Objective Bayesian analysis for bivariate Marshall–Olkin exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 299-313.
    15. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    16. Debasis Kundu, 2022. "Stationary GE-Process and its Application in Analyzing Gold Price Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 575-595, November.
    17. Saralees Nadarajah, 2011. "The exponentiated exponential distribution: a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 219-251, September.
    18. Debasis Kundu, 2021. "Stationary GE-Process and its Application in Analyzing Gold Price Data," Papers 2201.02568, arXiv.org.
    19. Mehdi Basikhasteh & Iman Makhdoom, 2022. "Bayesian inference of bivariate Weibull geometric model based on LINEX and quadratic loss functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 867-880, April.
    20. Manuel Franco & Juana-María Vivo & Debasis Kundu, 2020. "A Generator of Bivariate Distributions: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(10), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:644-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.