IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i12p3007-3019.html
   My bibliography  Save this article

Detecting influential observations in Kernel PCA

Author

Listed:
  • Debruyne, Michiel
  • Hubert, Mia
  • Van Horebeek, Johan

Abstract

Kernel Principal Component Analysis extends linear PCA from a Euclidean space to any reproducing kernel Hilbert space. Robustness issues for Kernel PCA are studied. The sensitivity of Kernel PCA to individual observations is characterized by calculating the influence function. A robust Kernel PCA method is proposed by incorporating kernels in the Spherical PCA algorithm. Using the scores from Spherical Kernel PCA, a graphical diagnostic is proposed to detect points that are influential for ordinary Kernel PCA.

Suggested Citation

  • Debruyne, Michiel & Hubert, Mia & Van Horebeek, Johan, 2010. "Detecting influential observations in Kernel PCA," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3007-3019, December.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3007-3019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00312-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    2. Daniel Gervini, 2008. "Robust functional estimation using the median and spherical principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 587-600.
    3. Hubert, Mia & Rousseeuw, Peter & Verdonck, Tim, 2009. "Robust PCA for skewed data and its outlier map," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2264-2274, April.
    4. Marden, John I., 1999. "Some robust estimates of principal components," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 349-359, July.
    5. Croux, Christophe & Ruiz-Gazen, Anne, 2005. "High breakdown estimators for principal components: the projection-pursuit approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 206-226, July.
    6. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    7. Serneels, Sven & Verdonck, Tim, 2008. "Principal component analysis for data containing outliers and missing elements," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1712-1727, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heinrich Fritz & Peter Filzmoser & Christophe Croux, 2012. "A comparison of algorithms for the multivariate L 1 -median," Computational Statistics, Springer, vol. 27(3), pages 393-410, September.
    2. Hubert, Mia & Dierckx, Goedele & Vanpaemel, Dina, 2013. "Detecting influential data points for the Hill estimator in Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 13-28.
    3. Alam, Md. Ashad & Calhoun, Vince D. & Wang, Yu-Ping, 2018. "Identifying outliers using multiple kernel canonical correlation analysis with application to imaging genetics," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 70-85.
    4. Lan Huong Nguyen & Susan Holmes, 2019. "Ten quick tips for effective dimensionality reduction," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    2. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    3. Dürre, Alexander & Vogel, Daniel & Tyler, David E., 2014. "The spatial sign covariance matrix with unknown location," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 107-117.
    4. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    5. Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2010. "Detecting influential observations in principal components and common principal components," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2967-2975, December.
    6. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    7. Dürre, Alexander & Tyler, David E. & Vogel, Daniel, 2016. "On the eigenvalues of the spatial sign covariance matrix in more than two dimensions," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 80-85.
    8. Lee, Seokho & Shin, Hyejin & Billor, Nedret, 2013. "M-type smoothing spline estimators for principal functions," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 89-100.
    9. Hervé Cardot & Antoine Godichon-Baggioni, 2017. "Fast estimation of the median covariation matrix with application to online robust principal components analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 461-480, September.
    10. Dürre, Alexander & Vogel, Daniel & Fried, Roland, 2015. "Spatial sign correlation," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 89-105.
    11. Cevallos-Valdiviezo, Holger & Van Aelst, Stefan, 2019. "Fast computation of robust subspace estimators," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 171-185.
    12. Taskinen, Sara & Koch, Inge & Oja, Hannu, 2012. "Robustifying principal component analysis with spatial sign vectors," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 765-774.
    13. Dürre, Alexander & Vogel, Daniel, 2016. "Asymptotics of the two-stage spatial sign correlation," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 54-67.
    14. Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
    15. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
    16. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    17. B. Barış Alkan, 2016. "Robust Principal Component Analysis Based on Modified Minimum Covariance Determinant in the Presence of Outliers," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(2), pages 85-94, September.
    18. Václav Plevka & Pieter Segaert & Chris M. J. Tampère & Mia Hubert, 2016. "Analysis of travel activity determinants using robust statistics," Transportation, Springer, vol. 43(6), pages 979-996, November.
    19. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    20. C. Croux & C. Dehon & A. Yadine, 2010. "The k-step spatial sign covariance matrix," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 137-150, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3007-3019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.