IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v189y2024ics0167947323001639.html
   My bibliography  Save this article

Standard error estimates in hierarchical generalized linear models

Author

Listed:
  • Jin, Shaobo
  • Lee, Youngjo

Abstract

Hierarchical generalized linear models are often used to fit random effects models. However, attention is mostly paid to the estimation of fixed unknown parameters and inference for latent random effects. In contrast, standard error estimators receive less attention than they should be. Currently, the standard error estimators are based on various approximations, even when the mean parameters may be estimated from a higher-order approximation of the likelihood and the dispersion parameters are estimated by restricted maximum likelihood. Existing standard error estimation procedures are reviewed. A numerical illustration shows that the current standard errors are not necessarily accurate. Alternative standard errors are also proposed. In particular, a sandwich estimator that accounts for the dependence between the mean parameters and the dispersion parameters greatly improve the current standard errors.

Suggested Citation

  • Jin, Shaobo & Lee, Youngjo, 2024. "Standard error estimates in hierarchical generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:csdana:v:189:y:2024:i:c:s0167947323001639
    DOI: 10.1016/j.csda.2023.107852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323001639
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jianmin & Bentler, Peter M., 2012. "Application of H-likelihood to factor analysis models with binary response data," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 72-79.
    2. Youngjo Lee & John A. Nelder, 2006. "Double hierarchical generalized linear models (with discussion)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 139-185, April.
    3. Noh, Maengseok & Lee, Youngjo, 2007. "REML estimation for binary data in GLMMs," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 896-915, May.
    4. Yun, Sungcheol & Lee, Youngjo, 2004. "Comparison of hierarchical and marginal likelihood estimators for binary outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 639-650, April.
    5. Flores-Agreda, Daniel & Cantoni, Eva, 2019. "Bootstrap estimation of uncertainty in prediction for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 1-17.
    6. Youngjo Lee & Jan F. Bjørnstad, 2013. "Extended likelihood approach to large-scale multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 553-575, June.
    7. Youngjo Lee & Gwangsu Kim, 2016. "H-likelihood Predictive Intervals for Unobservables," International Statistical Review, International Statistical Institute, vol. 84(3), pages 487-505, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    2. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    3. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    4. Yudi Pawitan & Youngjo Lee, 2017. "Wallet Game: Probability, Likelihood, and Extended Likelihood," The American Statistician, Taylor & Francis Journals, vol. 71(2), pages 120-122, April.
    5. Meza, Cristian & Jaffrézic, Florence & Foulley, Jean-Louis, 2009. "Estimation in the probit normal model for binary outcomes using the SAEM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1350-1360, February.
    6. Noh, Maengseok & Wu, Lang & Lee, Youngjo, 2012. "Hierarchical likelihood methods for nonlinear and generalized linear mixed models with missing data and measurement errors in covariates," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 42-51.
    7. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    8. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    9. Noh, Maengseok & Lee, Youngjo, 2008. "Hierarchical-likelihood approach for nonlinear mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3517-3527, March.
    10. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    11. Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    12. Cibele M. Russo & Gilberto A. Paula & Francisco Jos� A. Cysneiros & Reiko Aoki, 2012. "Influence diagnostics in heteroscedastic and/or autoregressive nonlinear elliptical models for correlated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1049-1067, October.
    13. Leckie, George, 2014. "runmixregls: A Program to Run the MIXREGLS Mixed-Effects Location Scale Software from within Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(c02).
    14. Rabindra Nath Das & Jeong-Soo Park, 2012. "Discrepancy in regression estimates between log-normal and gamma: some case studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 97-111, March.
    15. Lee, Sangin & Lee, Youngjo & Pawitan, Yudi, 2018. "Sparse pathway-based prediction models for high-throughput molecular data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 125-135.
    16. Lee, Sangin & Pawitan, Yudi & Lee, Youngjo, 2015. "A random-effect model approach for group variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 147-157.
    17. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    18. I. Gijbels & I. Prosdocimi, 2011. "Smooth estimation of mean and dispersion function in extended generalized additive models with application to Italian induced abortion data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2391-2411, December.
    19. Alicja Wolny-Dominiak & Tomasz Żądło, 2021. "The Measures of Accuracy of Claim Frequency Credibility Predictor," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    20. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:189:y:2024:i:c:s0167947323001639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.