IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v174y2022ics0167947322000561.html
   My bibliography  Save this article

Nonlinear predictive directions in clinical trials

Author

Listed:
  • Cho, Youngjoo
  • Zhan, Xiang
  • Ghosh, Debashis

Abstract

In many clinical trials, individuals in different subgroups may experience differential treatment effects. This leads to the need to consider individualized differences in treatment benefit. The general concept of predictive directions, which are risk scores motivated by potential outcomes considerations, is introduced. These techniques borrow heavily from the literature from sufficient dimension reduction (SDR) and causal inference. Initially directions assuming an idealized complete data structure are formulated. Then a new connection between SDR and kernel machine methodology for detection of treatment-covariate interactions is developed. Simulation studies and a real data analysis from AIDS Clinical Trials Group (ACTG) 175 data show the utility of the proposed approach.

Suggested Citation

  • Cho, Youngjoo & Zhan, Xiang & Ghosh, Debashis, 2022. "Nonlinear predictive directions in clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322000561
    DOI: 10.1016/j.csda.2022.107476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322000561
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
    2. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    3. Kehl, Victoria & Ulm, Kurt, 2006. "Responder identification in clinical trials with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1338-1355, March.
    4. Lan Wang & Yu Zhou & Rui Song & Ben Sherwood, 2018. "Quantile-Optimal Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1243-1254, July.
    5. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    6. Wei Luo & Yeying Zhu & Debashis Ghosh, 2017. "On estimating regression-based causal effects using sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 104(1), pages 51-65.
    7. Ghosh, Debashis, 2011. "Propensity score modelling in observational studies using dimension reduction methods," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 813-820, July.
    8. Youngjoo Cho & Debashis Ghosh, 2021. "Quantile-Based Subgroup Identification for Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 90-128, April.
    9. Tianxi Cai & Giulia Tonini & Xihong Lin, 2011. "Kernel Machine Approach to Testing the Significance of Multiple Genetic Markers for Risk Prediction," Biometrics, The International Biometric Society, vol. 67(3), pages 975-986, September.
    10. Dawei Liu & Xihong Lin & Debashis Ghosh, 2007. "Semiparametric Regression of Multidimensional Genetic Pathway Data: Least-Squares Kernel Machines and Linear Mixed Models," Biometrics, The International Biometric Society, vol. 63(4), pages 1079-1088, December.
    11. Yuanyuan Shen & Tianxi Cai, 2016. "Identifying predictive markers for personalized treatment selection," Biometrics, The International Biometric Society, vol. 72(4), pages 1017-1025, December.
    12. Qiang Wu & Feng Liang & Sayan Mukherjee, 2013. "Kernel Sliced Inverse Regression: Regularization and Consistency," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, July.
    13. Su Xiaogang & Zhou Tianni & Yan Xin & Fan Juanjuan & Yang Song, 2008. "Interaction Trees with Censored Survival Data," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youngjoo Cho & Debashis Ghosh, 2021. "Quantile-Based Subgroup Identification for Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 90-128, April.
    2. Feng, Sanying & Kong, Kaidi & Kong, Yinfei & Li, Gaorong & Wang, Zhaoliang, 2022. "Statistical inference of heterogeneous treatment effect based on single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    3. Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.
    4. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    5. Lin Zhang & Inyoung Kim, 2021. "Finite mixtures of semiparametric Bayesian survival kernel machine regressions: Application to breast cancer gene pathway subgroup analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 251-269, March.
    6. Wei Luo & Yeying Zhu & Debashis Ghosh, 2017. "On estimating regression-based causal effects using sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 104(1), pages 51-65.
    7. Yaoyao Xu & Menggang Yu & Ying‐Qi Zhao & Quefeng Li & Sijian Wang & Jun Shao, 2015. "Regularized outcome weighted subgroup identification for differential treatment effects," Biometrics, The International Biometric Society, vol. 71(3), pages 645-653, September.
    8. Pengzhou Wu & Kenji Fukumizu, 2021. "$\beta$-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap," Papers 2110.05225, arXiv.org.
    9. Cai, Hengrui & Shi, Chengchun & Song, Rui & Lu, Wenbin, 2023. "Jump interval-learning for individualized decision making with continuous treatments," LSE Research Online Documents on Economics 118231, London School of Economics and Political Science, LSE Library.
    10. Niwen Zhou & Xu Guo & Lixing Zhu, 2022. "The role of propensity score structure in asymptotic efficiency of estimated conditional quantile treatment effect," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 718-743, June.
    11. Ghosh, Debashis, 2014. "An asymptotically minimax kernel machine," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 33-38.
    12. Shi, Chengchun & Wan, Runzhe & Song, Ge & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2023. "A multiagent reinforcement learning framework for off-policy evaluation in two-sided markets," LSE Research Online Documents on Economics 117174, London School of Economics and Political Science, LSE Library.
    13. Lu Li & Niwen Zhou & Lixing Zhu, 2022. "Outcome regression-based estimation of conditional average treatment effect," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 987-1041, October.
    14. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    15. William Arbour, 2021. "Can Recidivism be Prevented from Behind Bars? Evidence from a Behavioral Program," Working Papers tecipa-683, University of Toronto, Department of Economics.
    16. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    18. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    19. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322000561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.