IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i1p249-257.html
   My bibliography  Save this article

Efficient screening of predictive biomarkers for individual treatment selection

Author

Listed:
  • Shonosuke Sugasawa
  • Hisashi Noma

Abstract

The development of molecular diagnostic tools to achieve individualized medicine requires identifying predictive biomarkers associated with subgroups of individuals who might receive beneficial or harmful effects from different available treatments. However, due to the large number of candidate biomarkers in the large‐scale genetic and molecular studies, and complex relationships among clinical outcome, biomarkers, and treatments, the ordinary statistical tests for the interactions between treatments and covariates have difficulties from their limited statistical powers. In this paper, we propose an efficient method for detecting predictive biomarkers. We employ weighted loss functions of Chen et al. to directly estimate individual treatment scores and propose synthetic posterior inference for effect sizes of biomarkers. We develop an empirical Bayes approach, namely, we estimate unknown hyperparameters in the prior distribution based on data. We then provide efficient screening methods for the candidate biomarkers via optimal discovery procedure with adequate control of false discovery rate. The proposed method is demonstrated in simulation studies and an application to a breast cancer clinical study in which the proposed method was shown to detect the much larger numbers of significant biomarkers than existing standard methods.

Suggested Citation

  • Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:249-257
    DOI: 10.1111/biom.13279
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13279
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    2. Shigeyuki Matsui & Hisashi Noma & Pingping Qu & Yoshio Sakai & Kota Matsui & Christoph Heuck & John Crowley, 2018. "Multi†subgroup gene screening using semi†parametric hierarchical mixture models and the optimal discovery procedure: Application to a randomized clinical trial in multiple myeloma," Biometrics, The International Biometric Society, vol. 74(1), pages 313-320, March.
    3. John D. Storey, 2007. "The optimal discovery procedure: a new approach to simultaneous significance testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 347-368, June.
    4. Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
    5. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    6. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    7. Kehl, Victoria & Ulm, Kurt, 2006. "Responder identification in clinical trials with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1338-1355, March.
    8. Adam Ciarleglio & Eva Petkova & R. Todd Ogden & Thaddeus Tarpey, 2015. "Treatment decisions based on scalar and functional baseline covariates," Biometrics, The International Biometric Society, vol. 71(4), pages 884-894, December.
    9. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    10. Lu Tian & Ash A. Alizadeh & Andrew J. Gentles & Robert Tibshirani, 2014. "A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1517-1532, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    2. Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
    3. Muxuan Liang & Menggang Yu, 2023. "Relative contrast estimation and inference for treatment recommendation," Biometrics, The International Biometric Society, vol. 79(4), pages 2920-2932, December.
    4. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
    5. Hyung G. Park & Danni Wu & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2023. "Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 397-418, July.
    6. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    7. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    9. Adam Ciarleglio & Eva Petkova & Todd Ogden & Thaddeus Tarpey, 2018. "Constructing treatment decision rules based on scalar and functional predictors when moderators of treatment effect are unknown," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1331-1356, November.
    10. Baqun Zhang & Min Zhang, 2018. "C‐learning: A new classification framework to estimate optimal dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 74(3), pages 891-899, September.
    11. Riccardo Di Francesco, 2022. "Aggregation Trees," CEIS Research Paper 546, Tor Vergata University, CEIS, revised 20 Nov 2023.
    12. Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
    13. Daniel Yekutieli, 2015. "Bayesian tests for composite alternative hypotheses in cross-tabulated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 287-301, June.
    14. Pons Rotger, Gabriel & Rosholm, Michael, 2020. "The Role of Beliefs in Long Sickness Absence: Experimental Evidence from a Psychological Intervention," IZA Discussion Papers 13582, Institute of Labor Economics (IZA).
    15. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    16. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    17. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    18. Hodula, Martin & Melecký, Martin & Pfeifer, Lukáš & Szabo, Milan, 2023. "Cooling the mortgage loan market: The effect of borrower-based limits on new mortgage lending," Journal of International Money and Finance, Elsevier, vol. 132(C).
    19. Kushal S. Shah & Haoda Fu & Michael R. Kosorok, 2023. "Stabilized direct learning for efficient estimation of individualized treatment rules," Biometrics, The International Biometric Society, vol. 79(4), pages 2843-2856, December.
    20. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:249-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.