IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v135y2019icp15-24.html
   My bibliography  Save this article

A fast algorithm for computing distance correlation

Author

Listed:
  • Chaudhuri, Arin
  • Hu, Wenhao

Abstract

Classical dependence measures such as Pearson correlation, Spearman’s ρ, and Kendall’s τ can detect only monotonic or linear dependence. To overcome these limitations, Székely et al. proposed distance covariance and its derived correlation. The distance covariance is a weighted L2 distance between the joint characteristic function and the product of marginal distributions; it is 0 if and only if two random vectors X and Y are independent. This measure can detect the presence of a dependence structure when the sample size is large enough. They further showed that the sample distance covariance can be calculated simply from modified Euclidean distances, which typically requires O(n2) cost, where n is the sample size. Quadratic computing time greatly limits the use of the distance covariance for large data. To calculate the sample distance covariance between two univariate random variables, a simple, exact O(nlog(n)) algorithms is developed. The proposed algorithm essentially consists of two sorting steps, so it is easy to implement. Empirical results show that the proposed algorithm is significantly faster than state-of-the-art methods. The algorithm’s speed will enable researchers to explore complicated dependence structures in large datasets.

Suggested Citation

  • Chaudhuri, Arin & Hu, Wenhao, 2019. "A fast algorithm for computing distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 15-24.
  • Handle: RePEc:eee:csdana:v:135:y:2019:i:c:p:15-24
    DOI: 10.1016/j.csda.2019.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319300313
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaobo Guo & Ye Zhang & Wenhao Hu & Haizhu Tan & Xueqin Wang, 2014. "Inferring Nonlinear Gene Regulatory Networks from Gene Expression Data Based on Distance Correlation," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
    2. Zhou Zhou, 2012. "Measuring nonlinear dependence in time‐series, a distance correlation approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 438-457, May.
    3. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    4. Niklas Pfister & Peter Bühlmann & Bernhard Schölkopf & Jonas Peters, 2018. "Kernel‐based tests for joint independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 5-31, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altarturi, Hamza H.M. & Saadoon, Muntadher & Anuar, Nor Badrul, 2020. "Cyber parental control: A bibliometric study," Children and Youth Services Review, Elsevier, vol. 116(C).
    2. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    3. Borgonovo, Emanuele & Ghidini, Valentina & Hahn, Roman & Plischke, Elmar, 2023. "Explaining classifiers with measures of statistical association," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Gao, Wei & Ng, Hon Keung Tony, 2023. "Multivariate tests of independence based on a new class of measures of independence in Reproducing Kernel Hilbert Space," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    2. Cencheng Shen & Joshua T. Vogelstein, 2021. "The exact equivalence of distance and kernel methods in hypothesis testing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 385-403, September.
    3. Guochang Wang & Wai Keung Li & Ke Zhu, 2018. "New HSIC-based tests for independence between two stationary multivariate time series," Papers 1804.09866, arXiv.org.
    4. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    5. Yanzhu Hu & Huiyang Zhao & Xinbo Ai, 2016. "Inferring Weighted Directed Association Network from Multivariate Time Series with a Synthetic Method of Partial Symbolic Transfer Entropy Spectrum and Granger Causality," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-25, November.
    6. Wan, Phyllis & Davis, Richard A., 2022. "Goodness-of-fit testing for time series models via distance covariance," Journal of Econometrics, Elsevier, vol. 227(1), pages 4-24.
    7. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
    8. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    9. Linh H. Nghiem & Francis K.C. Hui & Samuel Müller & A.H. Welsh, 2023. "Screening methods for linear errors‐in‐variables models in high dimensions," Biometrics, The International Biometric Society, vol. 79(2), pages 926-939, June.
    10. Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
    11. Li, Yujie & Li, Gaorong & Lian, Heng & Tong, Tiejun, 2017. "Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 133-150.
    12. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    13. Dominic Edelmann & Tobias Terzer & Donald Richards, 2021. "A Basic Treatment of the Distance Covariance," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 12-25, May.
    14. Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
    15. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    16. Bampinas, Georgios & Panagiotidis, Theodore & Politsidis, Panagiotis N., 2023. "Sovereign bond and CDS market contagion: A story from the Eurozone crisis," Journal of International Money and Finance, Elsevier, vol. 137(C).
    17. Zhang, Qingyang, 2019. "Independence test for large sparse contingency tables based on distance correlation," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 17-22.
    18. Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
    19. Chu, Ba, 2023. "A distance-based test of independence between two multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    20. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:135:y:2019:i:c:p:15-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.