IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i5p2119-2124.html
   My bibliography  Save this article

Number of elementary particles using exceptional Lie symmetry groups hierarchy

Author

Listed:
  • He, Ji-Huan
  • Xu, Lan

Abstract

This paper suggests several approaches to predict the number of elementary particles via a remarkable finite exceptional Lie symmetry groups hierarchy. This result confirms the earlier finding namely that nine elementary particles are still missing from the standard model.

Suggested Citation

  • He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2119-2124
    DOI: 10.1016/j.chaos.2007.06.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907004389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2007. "The Fibonacci code behind super strings and P-Branes. An answer to M. Kaku’s fundamental question," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 537-547.
    2. El Naschie, M.S., 2005. "On 336 kissing spheres in 10 dimensions, 528 P-Brane states in 11 dimensions and the 60 elementary particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 447-457.
    3. El Naschie, M. Saladin, 2006. "Intermediate prerequisites for E-infinity theory (Further recommended reading in nonlinear dynamics and mathematical physics)," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 622-628.
    4. He, Ji-Huan, 2007. "E-Infinity theory and the Higgs field," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 782-786.
    5. El Naschie, M.S., 2007. "Gauge anomalies, SU(N) irreducible representation and the number of elementary particles of a minimally extended standard model," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 14-16.
    6. Marek-Crnjac, L., 2006. "Pentaquarks and the mass spectrum of the elementary particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 332-341.
    7. He, Ji-Huan, 2006. "Application of E-infinity theory to biology," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 285-289.
    8. Marek-Crnjac, L., 2006. "Different Higgs models and the number of Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 575-579.
    9. He, Ji-Huan, 2007. "The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 346-351.
    10. El Naschie, M.S., 2005. "The Higgs and the expectation value of the number of elementary particles in a supersymmetric extensions of the standard model of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 23(2), pages 363-371.
    11. El Naschie, M.S., 2007. "Determining the number of Fermions and the number of Boson separately in an extended standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1241-1243.
    12. El Naschie, M.S., 2005. "Higgs number from anomaly cancellation and super Riemann tensor," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 653-657.
    13. He, Ji-Huan & Xu, Lan & Zhang, Li-Na & Wu, Xu-Hong, 2007. "Twenty-six dimensional polytope and high energy spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 5-13.
    14. He, Ji-Huan, 2006. "Application of E-infinity theory to turbulence," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 506-511.
    15. El Naschie, M.S., 2006. "Superstrings, entropy and the elementary particles content of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 48-54.
    16. El Naschie, M.S., 2007. "The elementary particles content of quantum spacetime via Feynman graphs and higher dimensional polytops," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 1-4.
    17. He, Ji-Huan, 2007. "On the number of elementary particles in a resolution dependent fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1645-1648.
    18. El Naschie, M.S., 2005. "Tadpoles, anomaly cancellation and the expectation value of the number of the Higgs particles in the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 659-663.
    19. El Naschie, M.S., 2006. "On the vital role played by the electron-volt units system in high energy physics and Mach’s principle of “Denkökonomie”," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1366-1371.
    20. Naschie, M.S.El, 2005. "Deriving the essential features of the standard model from the general theory of relativity," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 941-946.
    21. Marek-Crnjac, L., 2007. "The maximum number of elementary particles in a super symmetric extension of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1631-1636.
    22. El Naschie, M.S., 2007. "SO(10) grand unification in a fuzzy setting," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 958-961.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    2. Büyükkılıç, F. & Demirhan, D., 2009. "Cumulative growth with fibonacci approach, golden section and physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 24-32.
    3. Ye, Wang-Chuan & Li, Biao, 2009. "Finite symmetry transformation groups and exact solutions of the cylindrical Korteweg-de Vries equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2623-2628.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2008. "String theory in a scale dependent discontinuous space–time," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 542-545.
    2. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    3. He, Ji-Huan, 2007. "The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 346-351.
    4. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    5. He, Ji-Huan, 2007. "E-Infinity theory and the Higgs field," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 782-786.
    6. He, Ji-Huan & Xu, Lan & Zhang, Li-Na & Wu, Xu-Hong, 2007. "Twenty-six dimensional polytope and high energy spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 5-13.
    7. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.
    8. He, Ji-Huan, 2007. "On the number of elementary particles in a resolution dependent fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1645-1648.
    9. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    10. El Naschie, M.S., 2007. "From symmetry to particles," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 427-430.
    11. Marek-Crnjac, L., 2008. "The connection between the order of simple groups and the maximum number of elementary particles," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 641-644.
    12. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    13. El Naschie, M.S., 2006. "Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 297-330.
    14. El Naschie, M.S., 2007. "SU(5) grand unification in a transfinite form," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 370-374.
    15. Marek-Crnjac, L., 2008. "Exceptional Lie groups hierarchy, orthogonal and unitary groups in connection with symmetries of E-infinity space-time," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 517-520.
    16. Tanaka, Yosuke, 2008. "Hadron mass, Regge pole model and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 1-15.
    17. Tanaka, Yosuke, 2007. "The mass spectrum of heavier hadrons and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 996-1007.
    18. He, Ji-Huan & Liu, Jun-Fang, 2009. "Allometric scaling laws in biology and physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1836-1838.
    19. Sadeghi, J. & Pahlavani, M. & Emadi, A., 2008. "The group SO(4) and generalized function," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 308-312.
    20. Marek-Crnjac, L., 2006. "Different Higgs models and the number of Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 575-579.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2119-2124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.