IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v34y2007i4p1188-1201.html
   My bibliography  Save this article

Indirect adaptive control of discrete chaotic systems

Author

Listed:
  • Salarieh, Hassan
  • Shahrokhi, Mohammad

Abstract

In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations.

Suggested Citation

  • Salarieh, Hassan & Shahrokhi, Mohammad, 2007. "Indirect adaptive control of discrete chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1188-1201.
  • Handle: RePEc:eee:chsofr:v:34:y:2007:i:4:p:1188-1201
    DOI: 10.1016/j.chaos.2006.03.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906003535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.03.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alasty, Aria & Salarieh, Hassan, 2005. "Controlling the chaos using fuzzy estimation of OGY and Pyragas controllers," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 379-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salarieh, Hassan & Alasty, Aria, 2008. "Delayed feedback control via minimum entropy strategy in an economic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 851-860.
    2. dos Santos Coelho, Leandro & Coelho, Antonio Augusto Rodrigues, 2009. "Model-free adaptive control optimization using a chaotic particle swarm approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2001-2009.
    3. Salarieh, Hassan & Alasty, Aria, 2008. "Adaptive chaos synchronization in Chua's systems with noisy parameters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 233-241.
    4. Salarieh, Hassan & Alasty, Aria, 2009. "Chaos control in uncertain dynamical systems using nonlinear delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 67-71.
    5. Salarieh, Hassan & Alasty, Aria, 2009. "Chaos control in an economic model via minimum entropy strategy," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 839-847.
    6. Rani, Mamta & Agarwal, Rashi, 2009. "Generation of fractals from complex logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 447-452.
    7. Coelho, Leandro dos Santos & Araujo, Ernesto, 2009. "Identification of the Hénon chaotic map by fuzzy modeling and Nelder–Mead simplex method," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2762-2772.
    8. Layeghi, Hamed & Arjmand, Mehdi Tabe & Salarieh, Hassan & Alasty, Aria, 2008. "Stabilizing periodic orbits of chaotic systems using fuzzy adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1125-1135.
    9. Zelinka, Ivan & Senkerik, Roman & Navratil, Eduard, 2009. "Investigation on evolutionary optimization of chaos control," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 111-129.
    10. Rani, Mamta & Agarwal, Rashi, 2009. "A new experimental approach to study the stability of logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2062-2066.
    11. Salarieh, Hassan & Alasty, Aria, 2008. "Stabilizing unstable fixed points of chaotic maps via minimum entropy control," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 763-769.
    12. Salarieh, Hassan & Alasty, Aria, 2008. "Adaptive control of chaotic systems with stochastic time varying unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 168-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Yuhu & Hu, Liangjian, 2006. "On the quasi-controllability of continuous-time dynamic fuzzy control systems," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 177-188.
    2. Layeghi, Hamed & Arjmand, Mehdi Tabe & Salarieh, Hassan & Alasty, Aria, 2008. "Stabilizing periodic orbits of chaotic systems using fuzzy adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1125-1135.
    3. Alasty, Aria & Salarieh, Hassan, 2007. "Nonlinear feedback control of chaotic pendulum in presence of saturation effect," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 292-304.
    4. dos Santos Coelho, Leandro & Coelho, Antonio Augusto Rodrigues, 2009. "Model-free adaptive control optimization using a chaotic particle swarm approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2001-2009.
    5. Wang, Jiang & Si, Wenjie & Li, Huiyan, 2009. "Robust ISS-satisficing variable universe indirect fuzzy control for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 28-38.
    6. Bonakdar, Mohammad & Samadi, Mostafa & Salarieh, Hassan & Alasty, Aria, 2008. "Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincaré map," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 682-693.
    7. Salarieh, Hassan & Alasty, Aria, 2009. "Chaos control in uncertain dynamical systems using nonlinear delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 67-71.
    8. Yeh, Jiin-Po, 2007. "Identifying chaotic systems using a fuzzy model coupled with a linear plant," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1178-1187.
    9. Salarieh, Hassan & Alasty, Aria, 2008. "Adaptive control of chaotic systems with stochastic time varying unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 168-177.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:34:y:2007:i:4:p:1188-1201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.