IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011761.html
   My bibliography  Save this article

Flatness-based real-time control of experimental analog chaotic oscillators

Author

Listed:
  • Minati, Ludovico
  • Frasca, Mattia
  • Valdes-Sosa, Pedro A.
  • Barbot, Jean-Pierre
  • Letellier, Christophe

Abstract

In the control of non-linear dynamics, the notion of flatness provides a systematic framework for analyzing the observability and controllability of a system. Several successful applications of flatness-based control (in brief, flat control) have been demonstrated, but, to date, the control of chaos using this approach had been obtained only numerically. Here, for the first time, this issue is addressed through a systematic experimental investigation of two chaotic systems, namely, the Rössler system and the Saito circuit, realized in the form of analog electronic oscillators. These differ in the types of non-linearity and associated dynamics, as well as their observability and controllability. The corresponding flat control laws, including a homogeneous law, are derived and implemented, using suitable numerical reconstructions of the high-order derivatives, in real-time on a microcontroller interfaced with the analog circuits. Albeit with some limitations, viable control is attained over a wide range of settings, and the influences of the device non-idealities are analyzed in detail. These initial results suggest that, besides chaos suppression in engineering applications from vehicle stabilization to cardiology, flat chaos control could probably also be applied toward obtaining desired dynamical and synchronization states in large-scale physical models of complex systems.

Suggested Citation

  • Minati, Ludovico & Frasca, Mattia & Valdes-Sosa, Pedro A. & Barbot, Jean-Pierre & Letellier, Christophe, 2023. "Flatness-based real-time control of experimental analog chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011761
    DOI: 10.1016/j.chaos.2023.114274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castañeda, Carlos E. & López-Mancilla, D. & Chiu, R. & Villafaña-Rauda, E. & Orozco-López, Onofre & Casillas-Rodríguez, F. & Sevilla-Escoboza, R., 2019. "Discrete-time neural synchronization between an Arduino microcontroller and a Compact Development System using multiscroll chaotic signals," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 269-275.
    2. Almeida, David I. Rosas & Alvarez, Joaquín & Barajas, Juan Gonzalo, 2006. "Robust synchronization of Sprott circuits using sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 11-18.
    3. Ávalos-Ruiz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2018. "FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag–Leffler law," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 177-189.
    4. Borah, Manashita & Das, Debanita & Gayan, Antara & Fenton, Flavio & Cherry, Elizabeth, 2021. "Control and anticontrol of chaos in fractional-order models of Diabetes, HIV, Dengue, Migraine, Parkinson's and Ebola virus diseases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    5. Nasr, Salah & Mekki, Hassen & Bouallegue, Kais, 2019. "A multi-scroll chaotic system for a higher coverage path planning of a mobile robot using flatness controller," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 366-375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Yang, Yu & Qin, Shijie & Liao, Shijun, 2023. "Ultra-chaos of a mobile robot: A higher disorder than normal-chaos," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Kolebaje, Olusola & Popoola, Oyebola & Khan, Muhammad Altaf & Oyewande, Oluwole, 2020. "An epidemiological approach to insurgent population modeling with the Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Gu, Yajuan & Wang, Hu & Yu, Yongguang, 2020. "Synchronization for fractional-order discrete-time neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    9. Peng, Hongxin & Ji’e, Musha & Du, Xinyu & Duan, Shukai & Wang, Lidan, 2023. "Design of pseudorandom number generator based on a controllable multi-double-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Sun, Li & Wang, Jiang & Deng, Bin, 2009. "Global synchronization of two Ghostburster neurons via active control," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1213-1220.
    11. Garza-González, E. & Posadas-Castillo, C. & López-Mancilla, D. & Soriano-Sánchez, A.G., 2020. "Increasing synchronizability in a scale-free network via edge elimination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 233-243.
    12. Hashemi, M.S. & Inc, Mustafa & Yusuf, Abdullahi, 2020. "On three-dimensional variable order time fractional chaotic system with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    13. Yu Feng & Zhouchao Wei & Uğur Erkin Kocamaz & Akif Akgül & Irene Moroz, 2017. "Synchronization and Electronic Circuit Application of Hidden Hyperchaos in a Four-Dimensional Self-Exciting Homopolar Disc Dynamo without Equilibria," Complexity, Hindawi, vol. 2017, pages 1-11, May.
    14. Peng, Ya-Fu, 2009. "Robust intelligent backstepping tracking control for uncertain non-linear chaotic systems using H∞ control technique," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2081-2096.
    15. Aguirre, J. & Almendral, J.A. & Buldú, J.M. & Criado, R. & Gutiérrez, R. & Leyva, I. & Romance, M. & Sendiña-Nadal, I., 2019. "Experimental complexity in physical, social and biological systems," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 200-202.
    16. Marzban, Hamid Reza & Nezami, Atiyeh, 2022. "Analysis of nonlinear fractional optimal control systems described by delay Volterra–Fredholm integral equations via a new spectral collocation method," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    17. Singh, Piyush Pratap & Roy, Binoy Krishna, 2022. "Chaos and multistability behaviors in 4D dissipative cancer growth/decay model with unstable line of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    18. Wang, Jiang & Chen, Lisong & Deng, Bin, 2009. "Synchronization of Ghostburster neuron in external electrical stimulation via H∞ variable universe fuzzy adaptive control," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2076-2085.
    19. García-Guerrero, E.E. & Inzunza-González, E. & López-Bonilla, O.R. & Cárdenas-Valdez, J.R. & Tlelo-Cuautle, E., 2020. "Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    20. Balamurali Ramakrishnan & Victor Kamdoum Tamba & Hayder Natiq & Alex Stephane Kemnang Tsafack & Anitha Karthikeyan, 2022. "Dynamical analysis of autonomous Josephson junction jerk oscillator with cosine interference term embedded in FPGA and investigation of its collective behavior in a network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.