IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011463.html
   My bibliography  Save this article

Fixed-time nonlinear-filter-based consensus control for nonlinear multiagent systems

Author

Listed:
  • Liu, Xinxiao
  • Wang, Lijie
  • Liu, Yang

Abstract

This paper investigates the fixed-time consensus control problem for a class of nonlinear multiagent systems (MASs) based on dynamic event-triggered mechanism. In contrast to the already-existing fixed-time control schemes, which cannot address the singularity problem, by constructing a virtual signal and using inequality technology, a new processing method is provided to solve such a problem. In addition, a novel fixed-time nonlinear filter that converges in a fixed time is introduced, which effectively solves the “explosion of complexity” problem existed in backstepping. Moreover, to improve the utilization of resources, an event-triggered mechanism with internal dynamic variables is proposed. It is worth noting that some existing static event-triggered mechanisms are special cases of the dynamic ones. On this basis, an effective fixed-time event-triggered control scheme is developed for MASs, which minimizes the data transmission as much as possible while ensuring the system performance. More importantly, the scheme can ensure the convergence of the system in a fixed time. Finally, simulation results are shown to support the validity of the developed approach.

Suggested Citation

  • Liu, Xinxiao & Wang, Lijie & Liu, Yang, 2023. "Fixed-time nonlinear-filter-based consensus control for nonlinear multiagent systems," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011463
    DOI: 10.1016/j.chaos.2023.114244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Yangang & Tan, Jieqing & Wu, Jian & Zhang, Xu & He, Lei, 2022. "Prescribed tracking error fixed-time control of stochastic nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Su, Haipeng & Luo, Runzi & Huang, Meichun & Fu, Jiaojiao, 2022. "Practical fixed time active control scheme for synchronization of a class of chaotic neural systems with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Huang, Zichao & Wu, Qing & Ma, Jie & Fan, Shiqi, 2016. "An APF and MPC combined collaborative driving controller using vehicular communication technologies," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 232-242.
    4. Luo, Mei & Wang, JinRong & Meng, Deyuan, 2023. "Stochastic convergence problems on switching networks: An event-triggered method," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Cai, Yuliang & Dai, Jing & Zhang, Huaguang & Wang, Yingchun, 2021. "Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Weihua & Zhang, Huaguang & Wang, Wei & Cao, Zhengbao, 2022. "Fully distributed event-triggered time-varying formation control of multi-agent systems subject to mode-switching denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    2. Zhu, Zhibin & Wang, Fuyong & Yin, Yanhui & Liu, Zhongxin & Chen, Zengqiang, 2022. "Distributed fault-tolerant containment control for a class of non-linear multi-agent systems via event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    3. Wang, Boyu & Zhang, Yijun & Wei, Miao, 2023. "Fixed-time leader-following consensus of multi-agent systems with intermittent control," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    4. Gao, Zifan & Zhang, Dawei & Zhu, Shuqian, 2023. "Hybrid event-triggered synchronization control of delayed chaotic neural networks against communication delay and random data loss," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Luo, Runzi & Song, Zijun & Liu, Shuai, 2023. "Fixed-time observed synchronization of chaotic system with all state variables unavailable in some periods," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Luo, Peng & Wu, Defeng & Yamashita, Andre S. & Feng, Na & Yang, Yang, 2024. "Observer-based fixed-time dynamic surface tracking control for autonomous surface vehicles under actuator constraints and denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    8. Xueliang Wei & Cunzhong Li & Mingxuan Qi & Bingyang Luo & Xiangtian Deng & Guorong Zhu, 2019. "Research on Harmonic Current Amplification Effect of Parallel APF Compensating Voltage Source Nonlinear Load," Energies, MDPI, vol. 12(16), pages 1-16, August.
    9. Abinandhitha, R. & Monisha, S. & Sakthivel, R. & Manikandan, R. & Saat, S., 2023. "Proportional integral observer-based input–output finite-time stabilization for chaotic semi-Markov jump fuzzy systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    10. Sheng, Li & Zhang, Sen & Gao, Ming, 2021. "Intermittent fault detection for linear discrete-time stochastic multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    11. Zhao, Xu & Fan, Qingsong & Huang, Haisong & Gao, Yang & Zhang, Dabin, 2023. "Practical finite-/fixed-time improved command-filtered backstepping control for nonlinear systems via immersion and invariance," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.