IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921006512.html
   My bibliography  Save this article

Detrended multifractal characterization of Indian rainfall records

Author

Listed:
  • Sarker, Alivia
  • Mali, Provash

Abstract

Long term rainfall records in seven distinct temperature homogeneous regions of India have been analyzed using two different multifractal analysis techniques, namely the multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended moving average (MFDMA) techniques. In all the series studied a multifractal pattern has been obtained from both the methods, though the degree of multifractality observed for any given series largely depends on the analysis methods. Emphasis is given on the calculation of the generalized Hurst exponent spectra and the singularity spectra for all the series studied. In order to explore the possible source(s) of the multifractality in the data, we also study a set of ten shuffled series corresponding to each original series. We find that the origin of multifractality as obtained from both the methods, is mainly due to the fat-tailed probability distribution of the records in the series, though the contribution of the long-range temporal correlation cannot be ignored in the rainfall records.

Suggested Citation

  • Sarker, Alivia & Mali, Provash, 2021. "Detrended multifractal characterization of Indian rainfall records," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006512
    DOI: 10.1016/j.chaos.2021.111297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921006512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rak, Rafał & Grech, Dariusz, 2018. "Quantitative approach to multifractality induced by correlations and broad distribution of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 48-66.
    2. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    3. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    4. Dariusz Grech & Grzegorz Pamu{l}a, 2013. "On the multifractal effects generated by monofractal signals," Papers 1307.2014, arXiv.org, revised Aug 2013.
    5. Grech, Dariusz & Pamuła, Grzegorz, 2013. "On the multifractal effects generated by monofractal signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5845-5864.
    6. Yu, Zu-Guo & Leung, Yee & Chen, Yongqin David & Zhang, Qiang & Anh, Vo & Zhou, Yu, 2014. "Multifractal analyses of daily rainfall time series in Pearl River basin of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 193-202.
    7. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    8. Juan Luis Lopez & Jesus Guillermo Contreras, 2013. "Performance of multifractal detrended fluctuation analysis on short time series," Papers 1311.2278, arXiv.org.
    9. Chianca, C.V. & Ticona, A. & Penna, T.J.P., 2005. "Fourier-detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 447-454.
    10. He, Shanshan & Wang, Yudong, 2017. "Revisiting the multifractality in stock returns and its modeling implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 11-20.
    11. Struzik, Zbigniew R. & Siebes, Arno P.J.M., 2002. "Wavelet transform based multifractal formalism in outlier detection and localisation for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 388-402.
    12. Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
    13. Rafal Rak & Dariusz Grech, 2018. "Quantitative approach to multifractality induced by correlations and broad distribution of data," Papers 1805.11909, arXiv.org.
    14. Gulich, Damián & Zunino, Luciano, 2012. "The effects of observational correlated noises on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4100-4110.
    15. Ludescher, Josef & Bogachev, Mikhail I. & Kantelhardt, Jan W. & Schumann, Aicko Y. & Bunde, Armin, 2011. "On spurious and corrupted multifractality: The effects of additive noise, short-term memory and periodic trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2480-2490.
    16. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A., 2022. "Multifractal risk measures by Macroeconophysics perspective: The case of Brazilian inflation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Ferreira, Paulo & Aslam, Faheem & Tabak, Benjamin Miranda, 2022. "Interplay multifractal dynamics among metal commodities and US-EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Sun, Xiaoqin & She, Dongli & Sanz, Ernesto & Martín-Sotoca, Juan J. & Tarquis, Ana M. & Gao, Lei, 2023. "Multifractal analysis on CT soil images: Fluctuation analysis versus mass distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivares, Felipe & Zanin, Massimiliano, 2022. "Corrupted bifractal features in finite uncorrelated power-law distributed data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    2. Schadner, Wolfgang, 2021. "On the persistence of market sentiment: A multifractal fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    4. Schadner, Wolfgang, 2022. "U.S. Politics from a multifractal perspective," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    6. Shen, Na & Chen, Jiayi, 2023. "Asymmetric multifractal spectrum distribution based on detrending moving average cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    7. Li, Tingyi & Xue, Leyang & Chen, Yu & Chen, Feier & Miao, Yuqi & Shao, Xinzeng & Zhang, Chenyi, 2018. "Insights from multifractality analysis of tanker freight market volatility with common external factor of crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 374-384.
    8. Olivares, Felipe & Sun, Xiaoqian & Wandelt, Sebastian & Zanin, Massimiliano, 2023. "Measuring landing independence and interactions using statistical physics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    9. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    10. Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
    11. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing for intrinsic multifractality in the global grain spot market indices: A multifractal detrended fluctuation analysis," Papers 2306.10496, arXiv.org.
    12. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    14. Chen, Feier & Tian, Kang & Ding, Xiaoxu & Miao, Yuqi & Lu, Chunxia, 2016. "Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1058-1066.
    15. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    16. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    17. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Siokis, Fotios M., 2014. "European economies in crisis: A multifractal analysis of disruptive economic events and the effects of financial assistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 283-292.
    19. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    20. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.