IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics096007792100624x.html
   My bibliography  Save this article

Stochastic variability of regular and chaotic dynamics in 2D metapopulation model

Author

Listed:
  • Belyaev, Alexander
  • Bashkirtseva, Irina
  • Ryashko, Lev

Abstract

A behavior of metapopulation consisting of two coupled subsystems modeled by the Ricker map is considered. We study how dynamics of the metapopulation changes under increase in the intensity of migration between subpopulations. For the deterministic model, a variety of equilibrium, periodic, quasiperiodic, and chaotic attractors is described. An impact of random disturbances on the behavior of metapopulation is studied both numerically and analytically with the help of confidence domains. A phenomenon of the noise-induced temporal stabilization of the unstable equilibrium is discovered. We point out the special role of transients and fractal riddled basins in the noise-induced transitions from order to chaos.

Suggested Citation

  • Belyaev, Alexander & Bashkirtseva, Irina & Ryashko, Lev, 2021. "Stochastic variability of regular and chaotic dynamics in 2D metapopulation model," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s096007792100624x
    DOI: 10.1016/j.chaos.2021.111270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100624X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreev, Andrey V. & Makarov, Vladimir V. & Runnova, Anastasija E. & Pisarchik, Alexander N. & Hramov, Alexander E., 2018. "Coherence resonance in stimulated neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 80-85.
    2. Bashkirtseva, I. & Ryashko, L., 2019. "Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 78-84.
    3. Rybalova, E.V. & Strelkova, G.I. & Anishchenko, V.S., 2021. "Impact of sparse inter-layer coupling on the dynamics of a heterogeneous multilayer network of chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Frank Hellmann & Paul Schultz & Patrycja Jaros & Roman Levchenko & Tomasz Kapitaniak & Jürgen Kurths & Yuri Maistrenko, 2020. "Network-induced multistability through lossy coupling and exotic solitary states," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Kuperman, M.N. & Laguna, M.F. & Abramson, G. & Monjeau, J.A. & Lanata, J.L., 2019. "Metapopulation oscillations from satiation of predators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    6. Amritkar, R.E. & Jalan, Sarika, 2003. "Self-organized and driven phase synchronization in coupled map networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(1), pages 220-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bashkirtseva, Irina & Ryashko, Lev, 2022. "Stochastic generation and shifts of phantom attractors in the 2D Rulkov model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashkirtseva, Irina & Ryashko, Lev, 2022. "Stochastic generation and shifts of phantom attractors in the 2D Rulkov model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Frolov, Nikita & Rakshit, Sarbendu & Maksimenko, Vladimir & Kirsanov, Daniil & Ghosh, Dibakar & Hramov, Alexander, 2021. "Coexistence of interdependence and competition in adaptive multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. D’Onofrio, Giuseppe & Lansky, Petr & Tamborrino, Massimiliano, 2019. "Inhibition enhances the coherence in the Jacobi neuronal model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 108-113.
    4. Slepukhina, Evdokiia & Bashkirtseva, Irina & Ryashko, Lev & Kügler, Philipp, 2022. "Stochastic mixed-mode oscillations in the canards region of a cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Schülen, Leonhard & Janzen, David A. & Medeiros, Everton S. & Zakharova, Anna, 2021. "Solitary states in multiplex neural networks: Onset and vulnerability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Bashkirtseva, Irina A. & Ryashko, Lev B. & Pisarchik, Alexander N., 2020. "Ring of map-based neural oscillators: From order to chaos and back," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    7. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I., 2022. "Anti-phase synchronization of waves in a multiplex network of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Fan, Jin & Wang, Xiao Fan, 2005. "On synchronization in scale-free dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 443-451.
    9. Liu, Bo & Chu, Tianguang & Wang, Long & Wang, Zhanfeng, 2008. "Collective motion of a class of social foraging swarms," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 277-292.
    10. Lacerda, Juliana C. & Freitas, Celso & Macau, Elbert E.N., 2022. "Elementary changes in topology and power transmission capacity can induce failures in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    11. Jaimes-Reátegui, R. & García-López, J.H. & Gallegos, A. & Huerta Cuellar, G. & Chholak, P. & Pisarchik, A.N., 2021. "Deterministic coherence and anti-coherence resonances in networks of chaotic oscillators with frequency mismatch," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Kuperman, Marcelo N. & Abramson, Guillermo, 2021. "Allee effect in models of interacting species," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    13. Masoliver, Maria & Masoller, Cristina & Zakharova, Anna, 2021. "Control of coherence resonance in multiplex neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    15. Bashkirtseva, Irina & Kolinichenko, Alexander & Ryashko, Lev, 2021. "Stochastic sensitivity of Turing patterns: methods and applications to the analysis of noise-induced transitions," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    16. Jungeilges, Jochen & Pavletsov, Makar & Perevalova, Tatyana, 2022. "Noise-induced behavioral change driven by transient chaos," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    17. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Tommaso Menara & Giacomo Baggio & Dani Bassett & Fabio Pasqualetti, 2022. "Functional control of oscillator networks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Xu, Chaoqun, 2020. "Probabilistic mechanisms of the noise-induced oscillatory transitions in a Leslie type predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    20. Ostrovskii, Valerii Yu. & Rybin, Vyacheslav G. & Karimov, Artur I. & Butusov, Denis N., 2022. "Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s096007792100624x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.