IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921004574.html
   My bibliography  Save this article

Evolutionary games on simplicial complexes

Author

Listed:
  • Guo, H.
  • Jia, D.
  • Sendiña-Nadal, I.
  • Zhang, M.
  • Wang, Z.
  • Li, X.
  • Alfaro-Bittner, K.
  • Moreno, Y.
  • Boccaletti, S.

Abstract

Elucidating the mechanisms that lead to the emergence, evolution, and survival of cooperation in natural systems is still one of the main scientific challenges of current times. During the last three decades, theoretical and computational models as well as experimental data have made it possible to unveil and explain, from an evolutionary perspective, key processes underlying the dynamics of cooperation. However, many common cooperative scenarios remain elusive and at odds with Darwin’s natural selection theory. Here, we study evolutionary games on populations that are structured beyond pairwise interactions. Specifically, we introduce a completely new and general evolutionary approach that allows studying situations in which indirect interactions via a neighbor other than the direct pairwise connection (or via a group of neighbors), impacts the strategy of the focal player. To this end, we consider simplicial graphs that encode two- and three-body interactions. Our simplicial game framework enables us to study the competition between all possible pairs of social dilemmas, and grants us the option to scrutinize the role of three-body interactions in all the observed phenomenology. Thus, we simultaneously investigate how social dilemmas with different Nash equilibria compete in simplicial structures and how such a competition is modulated by the unbalance of 2- and 1-simplices, which in its turn reflects the relative prevalence of pairwise or group interactions among the players. We report a number of results that: (i) support that higher-order games allow for non-dominant strategists to emerge and coexist with dominant ones, a scenario that can’t be explained by any pairwise schemes, no matter the network of contacts; (ii) characterize a novel transition from dominant defection to dominant cooperation as a function of the simplicial structure of the population; and (iii) demonstrate that 2-simplex interactions are a source of strategy diversity, i.e. increasing the relative prevalence of group interactions always promotes diverse strategic identities of individuals. Our study constitutes, thus, a step forward in the quest for understanding the roots of cooperation and the mechanisms that sustain it in real world and social environments.

Suggested Citation

  • Guo, H. & Jia, D. & Sendiña-Nadal, I. & Zhang, M. & Wang, Z. & Li, X. & Alfaro-Bittner, K. & Moreno, Y. & Boccaletti, S., 2021. "Evolutionary games on simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004574
    DOI: 10.1016/j.chaos.2021.111103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921004574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. V. Gambuzza & F. Patti & L. Gallo & S. Lepri & M. Romance & R. Criado & M. Frasca & V. Latora & S. Boccaletti, 2021. "Stability of synchronization in simplicial complexes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Jeremy Cone & David G Rand, 2014. "Time Pressure Increases Cooperation in Competitively Framed Social Dilemmas," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-13, December.
    3. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    4. Oliver P. Hauser & David G. Rand & Alexander Peysakhovich & Martin A. Nowak, 2014. "Cooperating with the future," Nature, Nature, vol. 511(7508), pages 220-223, July.
    5. Vítor V. Vasconcelos & Francisco C. Santos & Jorge M. Pacheco, 2013. "A bottom-up institutional approach to cooperative governance of risky commons," Nature Climate Change, Nature, vol. 3(9), pages 797-801, September.
    6. Jörg Gross & Carsten K. W. Dreu, 2019. "The rise and fall of cooperation through reputation and group polarization," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Hirokazu Shirado & George Iosifidis & Leandros Tassiulas & Nicholas A. Christakis, 2019. "Resource sharing in technologically defined social networks," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Bo & Ahmadi, Atefeh & Mehrabbeik, Mahtab & Rajagopal, Karthikeyan & He, Shaobo & Jafari, Sajad, 2022. "Expanding the duopoly Stackelberg game with marginal costs into a multipoly game with lowering the burden of mathematical calculations: a numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Xu, Yan & Feng, Meiling & Zhu, Yuying & Xia, Chengyi, 2022. "Multi-player snowdrift game on scale-free simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Guo, Shiqiang & Wang, Juan & Zhao, Dawei & Xia, Chengyi, 2023. "Role of second-order reputation evaluation in the multi-player snowdrift game on scale-free simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Tan, Huaiyu & He, Zhixue & Du, Chunpeng & Shi, Lei, 2023. "Fast-response and low-tolerance promotes cooperation in cascading system collapse," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Zhang, Wei & Brandes, Ulrik, 2023. "Is cooperation sustained under increased mixing in evolutionary public goods games on networks?," Applied Mathematics and Computation, Elsevier, vol. 438(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    2. Ding, Rui & Wang, Xianjia & Liu, Yang & Zhao, Jinhua & Gu, Cuiling, 2023. "Evolutionary games with environmental feedbacks under an external incentive mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Lv, Shaojie & Song, Feifei, 2022. "Particle swarm intelligence and the evolution of cooperation in the spatial public goods game with punishment," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    4. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "The impact of current and historical reputation with non-uniform change on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. V'itor V. Vasconcelos & Phillip M. Hannam & Simon A. Levin & Jorge M. Pacheco, 2019. "Coalition-structured governance improves cooperation to provide public goods," Papers 1910.11337, arXiv.org.
    6. David G Rand & Gordon Kraft-Todd & June Gruber, 2015. "The Collective Benefits of Feeling Good and Letting Go: Positive Emotion and (dis)Inhibition Interact to Predict Cooperative Behavior," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-12, January.
    7. Guo, Tian & Du, Chunpeng & Shi, Lei, 2024. "Evolution of cooperation on interdependent networks: The impact of asymmetric punishment," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    8. Gao, Hongyu & Wang, Juan & Zhang, Fan & Li, Xiaopeng & Xia, Chengyi, 2021. "Cooperation dynamics based on reputation in the mixed population with two species of strategists," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Yu, Fengyuan & Wang, Jianwei & He, Jialu & Xu, Wenshu, 2023. "Friendship transmission and cooperation evolution in highly clustering interactions," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    10. Flávio L Pinheiro & Vítor V Vasconcelos & Francisco C Santos & Jorge M Pacheco, 2014. "Evolution of All-or-None Strategies in Repeated Public Goods Dilemmas," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-5, November.
    11. Theodor Cimpeanu & The Anh Han & Francisco C. Santos, 2019. "Exogenous Rewards for Promoting Cooperation in Scale-Free Networks," Papers 1905.04964, arXiv.org, revised May 2019.
    12. Xu, Yan & Feng, Meiling & Zhu, Yuying & Xia, Chengyi, 2022. "Multi-player snowdrift game on scale-free simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    13. Feng, Minyu & Han, Songlin & Li, Qin & Wu, Juan & Kurths, Jürgen, 2023. "Harmful strong agents and asymmetric interaction can promote the frequency of cooperation in the snowdrift game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    14. Chica, Manuel & Santos, Francisco C., 2023. "Seeding leading cooperators and institutions in networked climate dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Wang, Yongjie & Chen, Tong & Chen, Qiao & Si, Guangrun, 2017. "Emotional decisions in structured populations for the evolution of public cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 475-481.
    16. Wang, Yongjie & Chen, Tong, 2015. "Heuristics guide cooperative behaviors in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 59-65.
    17. Guo, Shiqiang & Wang, Juan & Zhao, Dawei & Xia, Chengyi, 2023. "Role of second-order reputation evaluation in the multi-player snowdrift game on scale-free simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    18. Adil Baykasoğlu & Burcu Kubur Özbel, 2021. "Explicit flow-risk allocation for cooperative maximum flow problems under interval uncertainty," Operational Research, Springer, vol. 21(3), pages 2149-2179, September.
    19. Chen, Yunong & Belmonte, Andrew & Griffin, Christopher, 2021. "Imitation of success leads to cost of living mediated fairness in the Ultimatum Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    20. Tamas Bereczkei & Zsolt Peter Szabo & Andrea Czibor, 2015. "Abusing Good Intentions," SAGE Open, , vol. 5(2), pages 21582440155, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.