IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v131y2020ics096007791930445x.html
   My bibliography  Save this article

Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations

Author

Listed:
  • Hu, Rong

Abstract

This paper investigates the almost sure exponential stability of Milstein-type schemes for stochastic delay differential equations (SDDEs) using the discrete semimartingale convergence theorem. It is shown that the Milstein scheme can preserve the almost sure stability of the exact solution under a linear growth condition on the drift. If the drift defies the linear growth condition, but satisfies a one-sided Lipschitz condition, we show backward Milstein scheme can share the almost sure exponential stability. Moreover, the exponential decay rates of the two classes of Milstein schemes are also investigated. Numerical experiments are performed to confirm our theoretic findings.

Suggested Citation

  • Hu, Rong, 2020. "Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s096007791930445x
    DOI: 10.1016/j.chaos.2019.109499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791930445X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    2. P. E. Kloeden & Eckhard Platen, 1989. "A survey of numerical methods for stochastic differential equations," Published Paper Series 1989-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jiamin & Li, Zhao-Yan & Deng, Feiqi, 2021. "Asymptotic behavior analysis of Markovian switching neutral-type stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    2. Cao, Wenping & Zhu, Quanxin, 2022. "Stability of stochastic nonlinear delay systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    3. Miaadi, Foued & Li, Xiaodi, 2021. "Impulsive effect on fixed-time control for distributed delay uncertain static neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    5. Chendur Kumaran, R. & Venkatesh, T.G. & Swarup, K.S., 2022. "Stochastic delay differential equations: Analysis and simulation studies," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    6. Li, Guangjie & Yang, Qigui, 2021. "Stability analysis of the θ-method for hybrid neutral stochastic functional differential equations with jumps," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uwe Küchler & Michael Sørensen, 2010. "A simple estimator for discrete-time samples from affine stochastic delay differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 125-132, June.
    2. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    3. Kamal Boukhetala & Arsalane Guidoum, 2011. "Sim.DiffProc: A Package for Simulation of Diffusion Processes in R," Working Papers hal-00629841, HAL.
    4. Küchler, Uwe & Platen, Eckhard, 2002. "Weak discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
    5. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    6. Marco Ferrante & Elisabetta Ferraris & Carles Rovira, 2016. "On a stochastic epidemic SEIHR model and its diffusion approximation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 482-502, September.
    7. Eckhard Platen, 2020. "Stochastic Modelling of the COVID-19 Epidemic," Research Paper Series 409, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Tuckwell, Henry C. & Jost, Jürgen, 2012. "Analysis of inverse stochastic resonance and the long-term firing of Hodgkin–Huxley neurons with Gaussian white noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5311-5325.
    9. Mahmoudi, Fatemeh & Tahmasebi, Mahdieh, 2022. "The convergence of a numerical scheme for additive fractional stochastic delay equations with H>12," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 219-231.
    10. Yoshihiro Saito & Taketomo Mitsui, 1993. "Simulation of stochastic differential equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 419-432, September.
    11. Wang, Zhen & Li, Xiong & Lei, Jinzhi, 2014. "Moment boundedness of linear stochastic delay differential equations with distributed delay," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 586-612.
    12. Becker, Christoph & Schmidt, Wolfgang M., 2013. "Stressing correlations and volatilities — A consistent modeling approach," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 174-194.
    13. Uwe Küchler & Eckhard Platen, 2007. "Time Delay and Noise Explaining Cyclical Fluctuations in Prices of Commodities," Research Paper Series 195, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Xiaopeng Xi & Donghua Zhou, 2022. "Prognostics of fractional degradation processes with state-dependent delay," Journal of Risk and Reliability, , vol. 236(1), pages 114-124, February.
    15. Mao, Wei & Hu, Liangjian & Mao, Xuerong, 2015. "The existence and asymptotic estimations of solutions to stochastic pantograph equations with diffusion and Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 883-896.
    16. Ogawa, Shigeyoshi, 1995. "Some problems in the simulation of nonlinear diffusion processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 38(1), pages 217-223.
    17. Buckwar, Evelyn & Shardlow, Tony, 2001. "Weak approximation of stochastic differential delay equations," SFB 373 Discussion Papers 2001,88, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    18. Mao, Wei & Zhu, Quanxin & Mao, Xuerong, 2015. "Existence, uniqueness and almost surely asymptotic estimations of the solutions to neutral stochastic functional differential equations driven by pure jumps," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 252-265.
    19. R. Biscay & J. Jimenez & J. Riera & P. Valdes, 1996. "Local Linearization method for the numerical solution of stochastic differential equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(4), pages 631-644, December.
    20. Yu, Wenwu & Cao, Jinde, 2007. "Synchronization control of stochastic delayed neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 252-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s096007791930445x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.