IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v130y2020ics0960077919303935.html
   My bibliography  Save this article

Gradual learning supports cooperation in spatial prisoner’s dilemma game

Author

Listed:
  • Szolnoki, Attila
  • Chen, Xiaojie

Abstract

According to the standard imitation protocol, a less successful player adopts the strategy of the more successful one faithfully for future success. This is the cornerstone of evolutionary game theory that explores the vitality of competing strategies in different social dilemma situations. In our present work we explore the possible consequences of two slightly modified imitation protocols that are exaggerated and gradual learning rules. In the former case a learner does not only adopt, but also enlarges the strategy change for the hope of a higher income. Similarly, in the latter case a cautious learner does not adopt the alternative behavior precisely, but takes only a smaller step towards the other’s strategy during the updating process. Evidently, both scenarios assume that the players’ propensity to cooperate may vary gradually between zero (always defect) and one (always cooperate) where these extreme states represent the traditional two-strategy social dilemma. We have observed that while the usage of exaggerated learning has no particular consequence on the final state, but gradual learning can support cooperation significantly. The latter protocol mitigates the invasion speeds of both main strategies, but the decline of successful defector invasion is more significant, hence the biased impact of the modified microscopic rule on invasion processes explains our observations.

Suggested Citation

  • Szolnoki, Attila & Chen, Xiaojie, 2020. "Gradual learning supports cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303935
    DOI: 10.1016/j.chaos.2019.109447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Szolnoki & M. Perc & G. Szabó, 2008. "Diversity of reproduction rate supports cooperation in the prisoner's dilemma game on complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 505-509, February.
    2. Liu, Danna & Huang, Changwei & Dai, Qionglin & Li, Haihong, 2019. "Positive correlation between strategy persistence and teaching ability promotes cooperation in evolutionary Prisoner’s Dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 267-274.
    3. Szolnoki, Attila & Danku, Zsuzsa, 2018. "Dynamic-sensitive cooperation in the presence of multiple strategy updating rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 371-377.
    4. Boyu Zhang & Cong Li & Hannelore Silva & Peter Bednarik & Karl Sigmund, 2014. "The evolution of sanctioning institutions: an experimental approach to the social contract," Experimental Economics, Springer;Economic Science Association, vol. 17(2), pages 285-303, June.
    5. Wen-Bo Du & Xian-Bin Cao & Run-Ran Liu & Chun-Xiao Jia, 2010. "The Effect Of A History-Fitness-Based Updating Rule On Evolutionary Games," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(12), pages 1433-1442.
    6. Cheng, Fei & Chen, Tong & Chen, Qiao, 2019. "Matching donations based on social capital in Internet crowdfunding can promote cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    7. Liu, Run-Ran & Jia, Chun-Xiao & Rong, Zhihai, 2019. "Effects of enhancement level on evolutionary public goods game with payoff aspirations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 242-248.
    8. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong, 2017. "Aspiration-induced dormancy promotes cooperation in the spatial Prisoner’s Dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 625-630.
    9. Chen, Xiaojie & Fu, Feng & Wang, Long, 2008. "Promoting cooperation by local contribution under stochastic win-stay-lose-shift mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5609-5615.
    10. R. Jiménez & H. Lugo & M. San Miguel, 2009. "Gradual learning and the evolution of cooperation in the spatial Continuous Prisoner’s Dilemma," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 273-280, September.
    11. C. Hadjichrysanthou & M. Broom & J. Rychtář, 2011. "Evolutionary Games on Star Graphs Under Various Updating Rules," Dynamic Games and Applications, Springer, vol. 1(3), pages 386-407, September.
    12. Szolnoki, Attila & Perc, Matjaž & Danku, Zsuzsa, 2008. "Towards effective payoffs in the prisoner’s dilemma game on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2075-2082.
    13. Takesue, Hirofumi, 2019. "Effects of updating rules on the coevolving prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 399-408.
    14. Marco Tomassini & Enea Pestelacci & Leslie Luthi, 2007. "Social Dilemmas And Cooperation In Complex Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1173-1185.
    15. Yang, Guoli & Zhu, Cheng & Zhang, Weiming, 2019. "Adaptive and probabilistic strategy evolution in dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 99-110.
    16. Fu, Mingjian & Guo, Wenzhong & Cheng, Linlin & Huang, Shouying & Chen, Dewang, 2019. "History loyalty-based reward promotes cooperation in the spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1323-1329.
    17. Matsui, Akihiko, 1992. "Best response dynamics and socially stable strategies," Journal of Economic Theory, Elsevier, vol. 57(2), pages 343-362, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Ruqiang & Liu, Linjie & Liu, Yuyuan & Zhang, Liang, 2023. "Evolution of trust in a hierarchical population with different investors based on investment behavioral theory," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Xiaoyu Li & Le Cheng & Xiaotong Niu & Siying Li & Chen Liu & Peican Zhu, 2021. "Highly cooperative individuals’ clustering property in myopic strategy groups," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(6), pages 1-7, June.
    3. Li, Dandan & Zhou, Kai & Sun, Mei & Han, Dun, 2023. "Investigating the effectiveness of individuals’ historical memory for the evolution of the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    4. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    5. Szolnoki, Attila & Chen, Xiaojie, 2020. "Strategy dependent learning activity in cyclic dominant systems," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Liu, Yuyuan & Liu, Linjie & Guo, Ruqiang & Zhang, Liang, 2023. "N-player repeated evolutionary trust game under government management," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Peican Zhu & Xin Hou & Yangming Guo & Jiwei Xu & Jinzhuo Liu, 2021. "Investigating the effects of updating rules on cooperation by incorporating interactive diversity," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(2), pages 1-8, February.
    8. Zhao, Xiaowei & Xia, Haoxiang, 2023. "Information accuracy of migration and imitation influences the evolution of cooperation in spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2022. "Hybrid learning promotes cooperation in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Quan, Ji & Dong, Xu & Wang, Xianjia, 2022. "Rational conformity behavior in social learning promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    11. Dehghani, Sedigheh & Nazarimehr, Fahimeh & Jafari, Sajad, 2021. "How can cultural conditions affect society’s decisions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    12. Zhang, Liming & Huang, Changwei & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2021. "Cooperation guided by imitation, aspiration and conformity-driven dynamics in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    13. Zhu, Wenqiang & Pan, Qiuhui & He, Mingfeng, 2022. "Exposure-based reputation mechanism promotes the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    14. He, Jialu & Wang, Jianwei & Yu, Fengyuan & Chen, Wei & Li, Bofan, 2022. "The slow but persistent self-improvement boosts group cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    15. Duan, Yuxian & Huang, Jian & Zhang, Jiarui, 2023. "Evolutionary public good games based on the long-term payoff mechanism in heterogeneous networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szolnoki, Attila & Chen, Xiaojie, 2022. "Tactical cooperation of defectors in a multi-stage public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Szolnoki, Attila & Chen, Xiaojie, 2020. "Strategy dependent learning activity in cyclic dominant systems," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    4. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    5. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Zhang, Liming & Huang, Changwei & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2021. "Cooperation guided by imitation, aspiration and conformity-driven dynamics in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    7. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Group-size dependent synergy in heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Peican Zhu & Xin Hou & Yangming Guo & Jiwei Xu & Jinzhuo Liu, 2021. "Investigating the effects of updating rules on cooperation by incorporating interactive diversity," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(2), pages 1-8, February.
    9. Liu, Yongkui & Chen, Xiaojie & Zhang, Lin & Tao, Fei & Wang, Long, 2012. "Does migration cost influence cooperation among success-driven individuals?," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1301-1308.
    10. Wes Maciejewski & Feng Fu & Christoph Hauert, 2014. "Evolutionary Game Dynamics in Populations with Heterogenous Structures," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
    11. Li, Cong & Xu, Hedong & Fan, Suohai, 2020. "Synergistic effects of self-optimization and imitation rules on the evolution of cooperation in the investor sharing game," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    12. Szolnoki, Attila & Chen, Xiaojie, 2020. "Blocking defector invasion by focusing on the most successful partner," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    13. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    14. Yu, Fengyuan & Wang, Jianwei & Chen, Wei & He, Jialu, 2023. "Increased cooperation potential and risk under suppressed strategy differentiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    15. Li, Ya & Lan, Xin & Deng, Xinyang & Sadiq, Rehan & Deng, Yong, 2014. "Comprehensive consideration of strategy updating promotes cooperation in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 284-292.
    16. Lin, Jingyan & Huang, Changwei & Dai, Qionglin & Yang, Junzhong, 2020. "Evolutionary game dynamics of combining the payoff-driven and conformity-driven update rules," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Wang, Hanchen & Sun, Yichun & Zheng, Lei & Du, Wenbo & Li, Yumeng, 2018. "The public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 396-404.
    18. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2021. "Small fraction of selective cooperators can elevate general wellbeing significantly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    19. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    20. Wang, Xu-Wen & Nie, Sen & Jiang, Luo-Luo & Wang, Bing-Hong & Chen, Shi-Ming, 2017. "Role of delay-based reward in the spatial cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 153-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.