IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003829.html
   My bibliography  Save this article

Flat-tube solid oxide stack with high performance for power generation and hydrogen production

Author

Listed:
  • Liu, Zhao
  • Wang, Chengtian
  • Han, Beibei
  • Tang, Yafei
  • Sang, Junkang
  • Wang, Jianxin
  • Yang, Jun
  • Guan, Wanbing

Abstract

This study presents the design, fabrication, and evaluation of a high-performance flat-tube solid oxide cell (FT-SOC) stack, which demonstrates exceptional power generation and hydrogen production capabilities. Comprising three large-sized FT-SOCs, each with an active area of 60 cm2, the stack was tested at 750 °C. It achieved a peak power density of 1.222 W/cm2 in fuel cell (FC) mode and an electrolysis current density of 1.283 A/cm2 at an average voltage of 1.3 V in electrolysis cell (EC) mode, marking the highest reported values for FT-SOC stacks to date. These results surpass the performance of most large-sized planar SOC stacks. Post-operation analysis revealed excellent interfacial contact between components, contributing to the stack's high performance. This study underscores the potential of FT-SOCs in efficient power generation and electrolytic energy storage applications, providing insights that could facilitate their industrial application.

Suggested Citation

  • Liu, Zhao & Wang, Chengtian & Han, Beibei & Tang, Yafei & Sang, Junkang & Wang, Jianxin & Yang, Jun & Guan, Wanbing, 2024. "Flat-tube solid oxide stack with high performance for power generation and hydrogen production," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003829
    DOI: 10.1016/j.apenergy.2024.122999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.