IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003805.html
   My bibliography  Save this article

Design optimization on solidification performance of a rotating latent heat thermal energy storage system subject to fluctuating heat source

Author

Listed:
  • Huang, Xinyu
  • Li, Fangfei
  • Guo, Junfei
  • Li, Yuanji
  • Du, Rui
  • Yang, Xiaohu
  • He, Ya-Ling

Abstract

The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means. However, this technology is hindered by the instability of solar energy and the poor thermal conductivity of thermal storage materials. This study addresses the challenges posed by solar energy fluctuations by implementing a sinusoidal heat source condition during the heat release process of LHS system. Furthermore, a comprehensive approach is taken to enhance heat transfer, incorporating both active methods such as rotational conditions, and passive methods using metal nanoparticles and high-performance fins. The Taguchi method is employed to optimize rotation speed, heat source amplitude, and half-period of the latent heat storage unit, and the resulting heat release performance is compared between different structures and the optimized structures. The findings from optimal design analysis reveal that rotation speed has the most significant influence on mean heat discharging rate and solidification time, followed by the heat source amplitude and half-cycle period. There is a notable interaction between heat source amplitude and half-cycle period. Compared to the initial structure, the optimal structure identified through the optimal design shortens the solidification time by 11.18%, increases the mean heat discharging rate by 13.04% and raises the average temperature response by 18.82%. Furthermore, the addition of Al2O3 nanoparticles further enhances heat discharging properties. Specifically, the presence of 2.5% and 5% Al2O3 nanoparticles shortens unit solidification time by 9.52% and 18.83% and increases the mean heat release rate by 7.69% and 17.26%. It is noted that the incorporation of rotating-fit nanoparticles partly compensates for the limitations of increased viscosity and particle settlement associated with metal nanoparticles, although it does not fully address the challenges related to reduced heat storage/release.

Suggested Citation

  • Huang, Xinyu & Li, Fangfei & Guo, Junfei & Li, Yuanji & Du, Rui & Yang, Xiaohu & He, Ya-Ling, 2024. "Design optimization on solidification performance of a rotating latent heat thermal energy storage system subject to fluctuating heat source," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003805
    DOI: 10.1016/j.apenergy.2024.122997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.