IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003441.html
   My bibliography  Save this article

A machine learning-based two-stage approach for the location of undesirable facilities in the biomass-to-bioenergy supply chain

Author

Listed:
  • Yunusoglu, Pinar
  • Ozsoydan, Fehmi Burcin
  • Bilgen, Bilge

Abstract

Biomass-to-bioenergy supply chain management is an integral part of the sustainable industrialization of energy conversion through biomass to bioenergy by managing economic, environmental, and social challenges encountered in each supply chain stage. Motivated by a real-world biomass-to-bioenergy supply chain network design (BSCND) problem, this study addresses the location of undesirable facilities for the first time in the BSCND literature. The motivation of this study is to develop a machine learning-based two-stage approach for solving the BSCND problem with undesirable facilities that have a negative impact on surrounding communities. The first stage employs the k-means clustering algorithm to alleviate the complexity of the problem, and the second stage utilizes a novel pre-emptive goal programming (PGP) approach to optimize two distinct objectives hierarchically. The first objective maximizes the sum of the distances between all clients and the open facilities, which is the well-known objective of the obnoxious p-median (OpM) problem. The second objective maximizes the total profit of the entire supply chain. The applicability of the proposed solution approach is shown through the case problem, and performance of the two-stage approach is validated using randomly generated test problems. The computational results indicate the effectiveness of the clustering methodology in reducing the complexity of the problem while the PGP achieves the optimal configuration of the biomass-to-bioenergy supply chain handling the hierarchical objectives. The optimal solution of the case problem was achieved within 25,239.36 s execution time, and the total profit of the supply chain is $6,776,870.22 with 735 km total distance to clients. The average optimality gap for the first phase of the PGP is 4.97%, and the average optimality gap for the second phase of the PGP is 0.01% for the generated test problems.

Suggested Citation

  • Yunusoglu, Pinar & Ozsoydan, Fehmi Burcin & Bilgen, Bilge, 2024. "A machine learning-based two-stage approach for the location of undesirable facilities in the biomass-to-bioenergy supply chain," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003441
    DOI: 10.1016/j.apenergy.2024.122961
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.