IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261923018895.html
   My bibliography  Save this article

Supplying electricity and heat to low-energy residential buildings by experimentally integrating a fuel cell electric vehicle with a docking station prototype

Author

Listed:
  • Tiedemann, Tobias
  • Dasenbrock, Jan
  • Kroener, Michael
  • Satola, Barbara
  • Reininghaus, Nies
  • Schneider, Tobias
  • Vehse, Martin
  • Schier, Michael
  • Siefkes, Tjark
  • Agert, Carsten

Abstract

The integration of renewable energy sources like wind and solar leads to new challenges for a reliable power supply since they are fluctuating and can cause power shortages in times of low solar irradiation and wind. In the present work, the suitability and efficiency of fuel cell electric vehicles (FCEVs) as mobile coupled power and heat sources for residential buildings were investigated to bypass times of low PV and wind generation. For this, a scenario analysis was performed using the open energy modelling framework (OEMOF) for FCEVs providing both, electricity and heat, to a neighbourhood compiled of well-insulated all-electric buildings. Scenarios with and without storages (for heat and electricity) and the influence of an increasing number of battery electric vehicles to be charged were analysed. Preliminary and for the parameterisation of the FCEVs in the simulations, experiments with a modified passenger FCEV and a prototype docking station for the transfer of electricity and heat out of the FCEV were carried out. The results show that the additional heat transferred from the FCEVs to the buildings can cover up to 43% of the heat demand of the neighbourhood. Net efficiencies of over 90% from hydrogen conversion to direct current (DC) and heat were achieved with the test setup. Although hydrogen supply via the internal tanks is possible, a larger number of FCEVs would be needed to cover the necessary power capacities. A stationary supply or the use of larger FCEVs such as trucks would be beneficial for different technical aspects. The focus is on low energy neighbourhoods, therefore, the results are only valid for modern highly energy efficient buildings.

Suggested Citation

  • Tiedemann, Tobias & Dasenbrock, Jan & Kroener, Michael & Satola, Barbara & Reininghaus, Nies & Schneider, Tobias & Vehse, Martin & Schier, Michael & Siefkes, Tjark & Agert, Carsten, 2024. "Supplying electricity and heat to low-energy residential buildings by experimentally integrating a fuel cell electric vehicle with a docking station prototype," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261923018895
    DOI: 10.1016/j.apenergy.2023.122525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261923018895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.