IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924003581.html
   My bibliography  Save this article

Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst

Author

Listed:
  • Zhang, Shiyu
  • Bie, Xuan
  • Qian, Zheng
  • Wu, Mengna
  • Li, Kaile
  • Li, Qinghai
  • Zhang, Yanguo
  • Zhou, Hui

Abstract

CO2 gasification-reforming is a promising approach for the transformation of carbonaceous materials into CO-rich syngas. Within municipal solid waste and agricultural waste streams, plastics are commonly found intermixed with biomass waste. This study delves into the CO2 gasification-reforming of biomass (cellulose) and various plastics (PET, HDPE, and PS) using a self-built online weighing fixed bed reactor and a two-stage fixed bed reactor. During the gasification-reforming of cellulose-plastic mixtures without the catalyst, the experimental gas production rate of cellulose slightly decreased, with the peak of gas production migrating to a higher temperature range. This phenomenon can be attributed to the molten plastic adhering to the cellulose surface, which impeded heat and mass transfer essential for cellulose decomposition. Furthermore, the gas production from plastics was suppressed in the mixtures, likely due to the interference of cellulose char in the decomposition of plastics. The incorporation of 2%Ni/CeO2 catalysts not only augmented gas yields and production rates but also emphasized the synergistic interactions. For the cellulose-HDPE mixture, the total gas yield was reduced by 14.9 mmol gsample−1 relative to the theoretical value. Given that HDPE possessed the highest decomposition temperature, the synergistic interaction was predominantly driven by the inhibitive nature of cellulose char. In contrast, the total gas yields for cellulose-PET and cellulose-PS mixtures increased by 8.7 mmol gsample−1 and 13.3 mmol gsample−1, respectively. The free radicals emanating from cellulose could trigger the decomposition of volatile components from plastics. Concurrently, the decomposition products of plastic could serve as hydrogen donors to stabilize the volatiles of cellulose. The interactions primarily affect the volatiles and tar components of the mixtures. The catalysts amplified gas yields by facilitating the CO2 reforming of tar, therefore, the synergistic interaction became evident upon catalyst addition. Gas chromatography-mass spectrometry analyses of the tar also corroborated the described interaction mechanisms between cellulose and plastics. Thermogravimetric analysis of used catalysts indicated that the synergistic action between cellulose and plastic could effectively diminish coke deposition, thereby preventing swift catalyst deactivation.

Suggested Citation

  • Zhang, Shiyu & Bie, Xuan & Qian, Zheng & Wu, Mengna & Li, Kaile & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003581
    DOI: 10.1016/j.apenergy.2024.122975
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.