IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002927.html
   My bibliography  Save this article

A parallel differential learning ensemble framework based on enhanced feature extraction and anti-information leakage mechanism for ultra-short-term wind speed forecast

Author

Listed:
  • Wang, Jujie
  • Liu, Yafen
  • Li, Yaning

Abstract

Accurate ultra-short-term prediction plays a very important role in maintaining power equipment, preventing accidents, and optimizing dispatch effectiveness. Currently, the decomposition-integration method is widely used in ultra-short-term wind speed prediction. However, most of the existing models ignore the problem of information leakage that occurs during data processing and the effect of discrepancies between multiple decomposition sequences on the prediction results, which poses a great challenge to the accuracy of wind speed prediction. Therefore, this study proposes an improved hybrid wind speed prediction framework based on an improved decomposition method, an anti-information leakage mechanism and an enhanced deep learning algorithm. First, the original sequences are processed using improved singular spectrum analysis (ISSA) to achieve an effective mining of deep features. Second, Transformer is selected to construct the input-output relationship model between the original sequence and the feature components to form an anti-information leakage mechanism. Finally, an enhanced hybrid deep learning model is built using the concept of parallel processing, which can simultaneously process subsequences of different complexity and effectively reduce the prediction error of the model. Simulation experiments are conducted using four sets of data from wind farms located in Liaoning Province, China. The results of the simulations demonstrate that the model performs better in predictions than the benchmark model.

Suggested Citation

  • Wang, Jujie & Liu, Yafen & Li, Yaning, 2024. "A parallel differential learning ensemble framework based on enhanced feature extraction and anti-information leakage mechanism for ultra-short-term wind speed forecast," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002927
    DOI: 10.1016/j.apenergy.2024.122909
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.