IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002332.html
   My bibliography  Save this article

Dynamic adaptive event detection strategy based on power change-point weighting model

Author

Listed:
  • Wang, Gang
  • Li, Zhao
  • Luo, Zhao
  • Zhang, Tao
  • Lin, Mingliang
  • Li, Jiahao
  • Shen, Xin

Abstract

Event detection is a prerequisite and key component of NILM (Non-Intrusive Load Monitoring) by monitoring transient changes in residential loads to discern whether a transient event has occurred in an appliance. However, the event detection performance of existing algorithms is affected by the operating environment, and it isn't easy to maintain high accuracy. For this reason, this paper proposes an adaptive event detection method based on the PCW (power change-point weights) model. Specifically, the DACUSUM (Dynamic Adaptive Cumulative Sum) algorithm with dynamic updating of parameters is first proposed, which effectively avoids the miss and false detection of CUSUM in the process of event detection. Secondly, the PCW model is proposed, which is capable of evaluating the effect of event detection of thresholds through the transient information entropy without prior knowledge. Lastly, based on the DACUSUM and PCW model, the threshold-adaptive event detection method is proposed, which takes the transient information entropy as the objective function and utilizes the genetic algorithm to dynamically adjust the thresholds to improve the performance of event detection under different operating environments. Taking eight typical appliances as an example, on the one hand, the proposed DACUSUM reduces the leakage and false detection phenomena compared with CUSUM and improves the event detection performance. On the other hand, the PCW model-based event detection strategy doesn't need human intervention or prior knowledge and is adaptable to different operating environments. The experimental results show that the proposed strategy achieves F1 scores of over 90% for the event detection of eight types of home appliances.

Suggested Citation

  • Wang, Gang & Li, Zhao & Luo, Zhao & Zhang, Tao & Lin, Mingliang & Li, Jiahao & Shen, Xin, 2024. "Dynamic adaptive event detection strategy based on power change-point weighting model," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002332
    DOI: 10.1016/j.apenergy.2024.122850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.