IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924002320.html
   My bibliography  Save this article

Elevating urban sustainability: An intelligent framework for optimizing water-energy-food nexus synergies in metabolic landscapes

Author

Listed:
  • Zhou, Yanlai
  • Chang, Fi-John
  • Chang, Li-Chiu
  • Herricks, Edwin

Abstract

As global urbanization accelerates, harmonizing water, energy, and food (WEF) resources within urban contexts is pivotal for sustainable development. This study introduces the Intelligent Urban Metabolism Framework (IUMF) for synergizing WEF dynamics, with a focus on socio-technological linkages and environmental concerns arising from climate change. Through a pioneering fusion of system dynamics simulation, machine learning surrogate, metaheuristic optimization, and multi-criteria decision making techniques, IUMF offers a transformative approach to resource management under climate uncertainty. Leveraging comprehensive data sourced from Taipei, Taiwan, this study demonstrates noteworthy enhancements in WEF nexus synergies, including a 9% boost in water supply, an 8% rise in energy benefits, and a significant 13.8% increase in food production. The cases corresponding to the best solutions under the scenario depicting a wet year and high solar radiation intensity would attain the largest benefits: 873 million m3 of water supply (water sector), 90.3 million USD of power benefits (energy sector), and 79 million kg of food production (food sector). These advancements are achieved while reducing computational runtime from 20 h to 30 min. By fostering a user-friendly interface and embracing an intelligent framework, IUMF catalyzes urban sustainability efforts. Our study highlights the potential of intelligent frameworks in addressing complex urban challenges and guiding the evolution of resource-efficient systems and offers a blueprint for a more resilient and sustainable urban future.

Suggested Citation

  • Zhou, Yanlai & Chang, Fi-John & Chang, Li-Chiu & Herricks, Edwin, 2024. "Elevating urban sustainability: An intelligent framework for optimizing water-energy-food nexus synergies in metabolic landscapes," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002320
    DOI: 10.1016/j.apenergy.2024.122849
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.