IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924002125.html
   My bibliography  Save this article

Two-stage dynamic aggregation involving flexible resource composition and coordination based on submodular optimization

Author

Listed:
  • Ding, Zhetong
  • Li, Yaping
  • Zhang, Kaifeng
  • Peng, Jimmy Chih-Hsien

Abstract

Traditional virtual power plants (VPPs) with fixed resource composition and coordination strategies struggle to cost-effectively exploit the flexibility of large-scale resources for adapting variable regulation requirements and resources characteristics. To this end, this paper proposes a dynamic aggregation mechanism to flexibly select and coordinate individual resources for forming aggregators according to grids regulation requirements and resource characteristics. The proposed mechanism is operated through a two-stage dynamic aggregation model comprising resource selection and coordination. Considering the two-stage dynamic aggregation model is a combinational optimization problem with high computational complexity, the submodular optimization method is utilized to swiftly address this problem. First, the complementarity and submodularity of the dynamic aggregation process are formulated to elaborate how the aggregation regulation characteristics (ARCs) evolve with flexible resource composition and coordination. Next, a submodularity-based algorithm is developed to promptly solve dynamic aggregation model under three scenarios, where aggregation operators focus on the resources quantity, quality, and cost-effectiveness, respectively. The polynomial computational complexity of the proposed algorithm has also been evaluated. Simulations using the IEEE 39-bus (New England) system consists of 10,000 flexible resources were executed to assess the submodularity approach. The proposed algorithm demonstrates superior computing speed and better performance guaranteed results (90%, 97%, 90% in three scenarios) compared to other methods—making it more suitable for implementation in practice.

Suggested Citation

  • Ding, Zhetong & Li, Yaping & Zhang, Kaifeng & Peng, Jimmy Chih-Hsien, 2024. "Two-stage dynamic aggregation involving flexible resource composition and coordination based on submodular optimization," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002125
    DOI: 10.1016/j.apenergy.2024.122829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.