IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924002046.html
   My bibliography  Save this article

Joint forecasting of source-load-price for integrated energy system based on multi-task learning and hybrid attention mechanism

Author

Listed:
  • Li, Ke
  • Mu, Yuchen
  • Yang, Fan
  • Wang, Haiyang
  • Yan, Yi
  • Zhang, Chenghui

Abstract

In integrated energy systems (IESs), reliable planning and operation are challenging owing to significant uncertainties in energy production, utilization, and trading. To this end, this paper proposes a multi-task joint forecasting method that enables joint source-load-price forecasting. First, three uncertain variables in an IES, namely, renewable energy, the multi-energy load, and the energy price, were investigated and the complex coupling relationships among them were validated. Second, to cope with the redundant noise resulting from various inputs, multi-channel feature extraction and a hybrid attention mechanism were combined to enable separate extraction and unified fusion of features. Additionally, considering the unique one-dimensional input in the prediction domain, a sequential convolution attention module (SCAM) with a hybrid channel and temporal attention mechanism was proposed to guide multi-channel feature fusion. Finally, facing the challenge of multi-layer coupling information learning, a multi-task learning (MTL) integrated shared layer was designed. Based on the coordinated with MTL, multi-column convolutional neural network, SCAM and long short-term memory network, joint forecasting of source-load-price was realized. The simulation results showed that the average mean absolute percentage error of the proposed model was as low as 4.10% in source-load-price long-term forecasting, while that of winter short-term forecasting could reach 3.14%. In addition, the here proposed model was found to be superior to others in terms of computational efficiency and result stability.

Suggested Citation

  • Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2024. "Joint forecasting of source-load-price for integrated energy system based on multi-task learning and hybrid attention mechanism," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002046
    DOI: 10.1016/j.apenergy.2024.122821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.