IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001971.html
   My bibliography  Save this article

Enabling unsupervised fault diagnosis of proton exchange membrane fuel cell stack: Knowledge transfer from single-cell to stack

Author

Listed:
  • Liu, Zhongyong
  • Sun, Yuning
  • Tang, Xiawei
  • Mao, Lei

Abstract

Fault diagnosis has been considered as the most promising technique to strengthen reliability and durability of proton exchange membrane fuel cell (PEMFC) stack. However, the contradictory between sufficient labeled stack data requirement from existing methods and unlabeled stack data from real-world applications brings great challenges to unsupervised PEMFC stack fault diagnosis. For breaking through the bottleneck, this paper proposes an innovative deep transfer learning-based unsupervised PEMFC stack fault diagnosis method through knowledge transfer from single-cell to stack (DTL-PEM). Specifically, on the one hand, the proposed DTL-PEM method combines adversarial learning and conditional distribution adaptation to reduce both marginal and conditional distribution bias between single-cell and stack data, which greatly encourages capturing rich domain-invariant features to promote knowledge transferability from single-cell to stack. On the other hand, a weighting module is introduced in DTL-PEM network to eliminate the negative effect stemming from asymmetric label space. The effectiveness of the proposed DTL-PEM network is verified using labeled single-cell and unlabeled stack voltage data at various PEMFC states. Compared with the existing state-of-the-art methods, the proposed DTL-PEM network can not only achieve accurate unsupervised PEMFC stack fault diagnosis by knowledge transfer from single-cell to stack, but also have superior adaptability to different data openness, which make it promising in real-world PEMFC stack fault diagnosis. To the best of our knowledge, this is the first successful attempt to solve the unsupervised PEMFC stack fault diagnosis problem based on knowledge transfer from single-cell to stack.

Suggested Citation

  • Liu, Zhongyong & Sun, Yuning & Tang, Xiawei & Mao, Lei, 2024. "Enabling unsupervised fault diagnosis of proton exchange membrane fuel cell stack: Knowledge transfer from single-cell to stack," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001971
    DOI: 10.1016/j.apenergy.2024.122814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.