IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001909.html
   My bibliography  Save this article

State of charge estimation for a parallel battery pack jointly by fuzzy-PI model regulator and adaptive unscented Kalman filter

Author

Listed:
  • Peng, Simin
  • Miao, Yifan
  • Xiong, Rui
  • Bai, Jiawei
  • Cheng, Mengzeng
  • Pecht, Michael

Abstract

Parallel battery pack (PBP) is an important unit for its application in electric vehicles and energy storage, and precise state of charge (SOC) is the basic parameter for battery efficient operation. However, the SOC is an internal hidden immeasurable variable, and the measurable battery parameters of the PBP are limited, which makes it difficult to precisely estimate SOC for the PBP. The main efforts are as follows: An improved equivalent circuit model of the PBP is first established on the basis of the fuzzy-proportional integral model regulator, which can accurately describe the influence of battery cell inconsistency on the PBP discharging characteristics. Under constant current and UDDS operating conditions, the battery model voltage can accurately capture the measured voltage during the discharging process, especially at the final stage of discharge with the maximum voltage absolute error below 0.12 V (about 3.2%). A model-based SOC prediction algorithm using an adaptive unscented Kalman filter (AUKF) with a sliding window noise estimator is developed for the PBP. It can adaptively achieve accurate process and measurement noise statistics of the PBP for the AUKF. The SOC of the PBP can be precisely estimated using the developed method with the absolute errors below 2% even if the noise statistics are randomly given respectively. Moreover, compared to the unimproved AUKF and the Sage-Husa method, the presented algorithm illustrates the highest SOC prediction precision with the lowest root mean square error of 1.12% and the minimum mean absolute error of 1.08%.

Suggested Citation

  • Peng, Simin & Miao, Yifan & Xiong, Rui & Bai, Jiawei & Cheng, Mengzeng & Pecht, Michael, 2024. "State of charge estimation for a parallel battery pack jointly by fuzzy-PI model regulator and adaptive unscented Kalman filter," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001909
    DOI: 10.1016/j.apenergy.2024.122807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001909
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.