IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001491.html
   My bibliography  Save this article

Effect of vapor chamber on thermo-electrical characteristics of proton exchange membrane fuel cells

Author

Listed:
  • Zhao, Jing
  • Cheng, Xinxuan
  • Zhou, Caiting
  • Gan, Lang
  • Chen, Kang
  • Chen, Chao
  • Jian, Qifei

Abstract

Proton exchange membrane fuel cells have high energy density, but thermal management problems caused by insufficient heat dissipation during operation seriously threaten their output performance and durability. In this paper, a type of specially designed vapor chamber was developed and integrated into a proton exchange membrane fuel cell stack to enhance its thermal performance. A comprehensive study was conducted on the thermal-electrical characteristics of proton exchange membrane fuel cells with vapor chambers under different working conditions. The results indicated that the vapor chamber could conduct heat quickly and evenly, leading to better cooling performance and thermal uniformity of the fuel cell. Compared to the conventional proton exchange membrane fuel cell stack, the stack with the vapor chamber was found to have a 30% decrease in ohmic resistance and a 5.5% increase in output power. In addition, cooling conditions and gravity have been shown to significantly affect the thermal characteristics of fuel cells. The vapor chamber can effectively avoid thermal runaway caused by the rapid increase in heat, thereby making the stack operation safer and more reliable. The related research work has important guiding significance and reference value for the development of a high-efficiency and compact PEMFC thermal management system.

Suggested Citation

  • Zhao, Jing & Cheng, Xinxuan & Zhou, Caiting & Gan, Lang & Chen, Kang & Chen, Chao & Jian, Qifei, 2024. "Effect of vapor chamber on thermo-electrical characteristics of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001491
    DOI: 10.1016/j.apenergy.2024.122766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.