IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001429.html
   My bibliography  Save this article

A short-term wind power forecasting method based on multivariate signal decomposition and variable selection

Author

Listed:
  • Yang, Ting
  • Yang, Zhenning
  • Li, Fei
  • Wang, Hengyu

Abstract

Accurate and effective short-term wind power forecasting is vital for the large-scale integration of wind power generation into the power grid. However, due to the intermittence and volatility of wind resources, short-term wind power forecasting is challenging. To address the issue that the existing decomposition forecasting methods ignore the coupling relationship between wind power series and multiple meteorological series, this study proposes a short-term wind power forecasting method based on multivariate signal decomposition and variable selection. First, multivariate variational mode decomposition (MVMD) is used to perform time-frequency synchronous analysis on wind power and multidimensional meteorological series, thereby decomposing them into the same predefined number of frequency-aligned intrinsic mode functions (IMFs). Secondly, elastic net (EN) is used for supervised variable selection on all IMFs to provide a high-quality training set for the forecasting model, thereby enhancing precision and interpretability. Next, a hybrid deep neural network combining convolutional neural network (CNN), bidirectional long-short term memory (BiLSTM) neural network, and multi-head attention (MHA) mechanism is employed to model the output curve of a group of wind turbines in a wind farm. Finally, the proposed method is comprehensively evaluated through four sets of comparative experiments and multiple evaluation metrics on data gathered from the Mahuangshan first wind farm in China with four forecasting horizons: 15-min ahead, 30-min ahead, 45-min ahead, and 1-h ahead. The experimental results show that the proposed method significantly outperforms fifteen existing deep learning methods in terms of precision and stability.

Suggested Citation

  • Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001429
    DOI: 10.1016/j.apenergy.2024.122759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.