IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001259.html
   My bibliography  Save this article

Renewable energy system sizing with power generation and storage functions accounting for its optimized activity on multiple electricity markets

Author

Listed:
  • Bechlenberg, Alva
  • Luning, Egbert A.
  • Saltık, M. Bahadır
  • Szirbik, Nick B.
  • Jayawardhana, Bayu
  • Vakis, Antonis I.

Abstract

With increasing deployment of offshore wind farms, energy storage systems (ESS) are necessary to balance the renewable energy’s intermittency. Instead of independently sizing ESS for an existing renewable energy system (RES), this research highlights the importance of simultaneously sizing all subsystems of an RES. With specific electricity markets in mind and the offshore transmission cable power capacity as a constraint, a model predictive control algorithm is used to maximize the revenue streams for the studied RES. Results demonstrate how the choice of financial metric plays a key role in the outcome: using the levelized cost of energy yields a differently sized RES compared to using the net present value (NPV). In terms of the latter, including a sized ESS in an existing RES increases the NPV significantly. Simultaneously sizing all subsystems of the RES, on the other hand, shows that a 50% increase in NPV can be achieved by deploying a smaller generation subsystem with a larger power capacity ESS, compared to the case in which only the ESS is sized. The introduced sizing approach can be utilized before deploying RES to take their context of operation into account, thereby avoiding the design of suboptimal solutions.

Suggested Citation

  • Bechlenberg, Alva & Luning, Egbert A. & Saltık, M. Bahadır & Szirbik, Nick B. & Jayawardhana, Bayu & Vakis, Antonis I., 2024. "Renewable energy system sizing with power generation and storage functions accounting for its optimized activity on multiple electricity markets," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001259
    DOI: 10.1016/j.apenergy.2024.122742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.