IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924000783.html
   My bibliography  Save this article

Can an energy only market enable resource adequacy in a decarbonized power system? A co-simulation with two agent-based-models

Author

Listed:
  • Jimenez, I. Sanchez
  • Ribó-Pérez, D.
  • Cvetkovic, M.
  • Kochems, J.
  • Schimeczek, C.
  • de Vries, L.J.

Abstract

Future power systems, in which generation will come almost entirely from variable Renewable Energy Sources (vRES), will be characterized by weather-driven supply and flexible demand. In a simulation of the future Dutch power system, we analyze whether there are sufficient incentives for market-driven investors to provide a sufficient level of security of supply, considering the profit-seeking and myopic behavior of investors. We co-simulate two agent-based models (ABM), one for generation expansion and one for the operational time scale. The results suggest that in a system with a high share of vRES and flexibility, prices will be set predominantly by the demand’s willingness to pay, particularly by the opportunity cost of flexible hydrogen electrolyzers. The demand for electric heating could double the price of electricity in winter, compared to summer, and in years with low vRES could cause shortages. Simulations with stochastic weather profiles increase the year-to-year variability of cost recovery by more than threefold and the year-to-year price variability by more than tenfold compared to a scenario with no weather uncertainty. Dispatchable technologies have the most volatile annual returns due to high scarcity rents during years of low vRES production and diminished returns during years with high vRES production. We conclude that in a highly renewable EOM, investors would not have sufficient incentives to ensure the reliability of the system. If they invested in such a way to ensure that demand could be met in a year with the lowest vRES yield, they would not recover their fixed costs in the majority of years.

Suggested Citation

  • Jimenez, I. Sanchez & Ribó-Pérez, D. & Cvetkovic, M. & Kochems, J. & Schimeczek, C. & de Vries, L.J., 2024. "Can an energy only market enable resource adequacy in a decarbonized power system? A co-simulation with two agent-based-models," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924000783
    DOI: 10.1016/j.apenergy.2024.122695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924000783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.