IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924001624.html
   My bibliography  Save this article

Optimal Power Flow in a highly renewable power system based on attention neural networks

Author

Listed:
  • Li, Chen
  • Kies, Alexander
  • Zhou, Kai
  • Schlott, Markus
  • Sayed, Omar El
  • Bilousova, Mariia
  • Stöcker, Horst

Abstract

The Optimal Power Flow (OPF) problem is crucial for power system operations. It guides generator output and power distribution to meet demand at minimized costs while adhering to physical and engineering constraints. However, the integration of renewable energy sources, such as wind and solar, poses challenges due to their inherent variability. Frequent recalibrations of power settings are necessary due to changing weather conditions, which makes recurrent OPF resolutions necessary. This task can be daunting when using traditional numerical methods, especially for extensive power systems. In this work, we present a state-of-the-art, physics-informed machine learning methodology that was trained using imitation learning and historical European weather datasets. Our approach correlates electricity demand and weather patterns with power dispatch and generation, providing a faster solution suitable for real-time applications. We validated our method’s superiority over existing data-driven techniques in OPF solving through rigorous evaluations on aggregated European power systems. By presenting a quick, robust, and efficient solution, this research establishes a new standard in real-time optimal power flow (OPF) resolution. This paves the way for more resilient power systems in the era of renewable energy.

Suggested Citation

  • Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001624
    DOI: 10.1016/j.apenergy.2024.122779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.