IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924001582.html
   My bibliography  Save this article

Shared CO₂ capture, transport, and storage for decarbonizing industrial clusters

Author

Listed:
  • Gunawan, Tubagus Aryandi
  • Luo, Hongxi
  • Greig, Chris
  • Larson, Eric

Abstract

A model for estimating CO₂ capture retrofit costs at many types of industrial facilities is developed and then applied in a case study exploring alternative designs for capture, transport, and underground storage of CO₂ from a cluster of industrial facilities in Southeast Louisiana, USA. The capture cost model is anchored by granular chemical process simulations used to determine capacities of individual equipment components, the capital costs for which are estimated using factoring methods. To generalize the cost model, process simulations are developed for target capture streams having CO₂ concentrations of 5, 10, 15, and 94 mol%, and for each concentration, seven different scales of capture plants are modeled. The cost model is then embedded in SimCCSPRO, a customized version of open-source software for optimizing CO₂ pipeline capacities and routings to underground storage sites. For a 22-facility cluster of industrial CO₂ sources with collective emissions of 8.1 million tCO₂/year today, we explore capture, transport and storage (CTS) system designs with varying levels of shared capture and transport infrastructure. When CO₂ pipelines are shared rather than dedicated to individual capture facilities, average transport costs can be reduced by up to two-thirds (and aggregate pipeline length by more than this) for the same level of CO₂ capture and storage. However, capture costs dominate total CTS costs. Because of this, pooling emission streams from multiple facilities and sharing the scale-economy benefits of larger capture facilities enables more significant reductions in CTS costs per tonne of CO₂ stored, even though some of the savings are offset by the added flue gas transport costs. The cost benefits of shared infrastructure are most significant for smaller facilities, i.e., with emissions <0.1 million tCO₂/year.

Suggested Citation

  • Gunawan, Tubagus Aryandi & Luo, Hongxi & Greig, Chris & Larson, Eric, 2024. "Shared CO₂ capture, transport, and storage for decarbonizing industrial clusters," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001582
    DOI: 10.1016/j.apenergy.2024.122775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.