IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics030626192400103x.html
   My bibliography  Save this article

City-scale solar PV potential estimation on 3D buildings using multi-source RS data: A case study in Wuhan, China

Author

Listed:
  • Chen, Zhe
  • Yang, Bisheng
  • Zhu, Rui
  • Dong, Zhen

Abstract

Assessing the solar photovoltaic (PV) potential on buildings is essential for environmental protection and sustainable development. However, currently, the high costs of data acquisition and labor required to obtain 3D building models limit the scalability of such estimations extending to a large scale. To overcome the limitations, this study proposes a method of using freely available multi-source Remote Sensing (RS) data to estimate the solar PV potential on buildings at the city scale without any labeling. Firstly, Unsupervised Domain Adaptation (UDA) is introduced to transfer the building extraction knowledge learned by Deep Semantic Segmentation Networks (DSSN) from public datasets to available satellite images in a label-free manner. In addition, the coarse-grained land cover product is utilized to provide prior knowledge for reducing negative transfer. Secondly, the building heights are derived from the global open Digital Surface Model (DSM) using morphological operations. The building information obtained from the above two aspects supports the subsequent estimation. In the case study of Wuhan, China, the solar PV potential on all buildings throughout the city is estimated without any data acquisition cost or human labeling cost through the proposed method. In 2021, the estimated solar irradiation received by buildings in Wuhan is 289737.58 GWh. Taking into account the current technical conditions, the corresponding solar PV potential is 43460.64 GWh, which can meet the electricity demands of residents. The code and test data for building information extraction are available at https://github.com/WHU-USI3DV/3DBIE-SolarPV.

Suggested Citation

  • Chen, Zhe & Yang, Bisheng & Zhu, Rui & Dong, Zhen, 2024. "City-scale solar PV potential estimation on 3D buildings using multi-source RS data: A case study in Wuhan, China," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s030626192400103x
    DOI: 10.1016/j.apenergy.2024.122720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400103X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s030626192400103x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.