IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924001028.html
   My bibliography  Save this article

A hybrid PV cluster power prediction model using BLS with GMCC and error correction via RVM considering an improved statistical upscaling technique

Author

Listed:
  • Qiu, Lihong
  • Ma, Wentao
  • Feng, Xiaoyang
  • Dai, Jiahui
  • Dong, Yuzhuo
  • Duan, Jiandong
  • Chen, Badong

Abstract

Accurate cluster photovoltaic power prediction (CPPP) is crucial for the operation and control of renewable energy grid-connected power systems. The traditional modeling strategies for CPPP such as direct aggregation (DA) and statistical upscaling (SU) have limitations such as error accumulation and upscaling factor uncertainty. To address these issues, this paper proposed a novel hybrid approach for CPPP by combining machine learning models with an improved SU technique. Firstly, a robust broad learning system (BLS) model, in which the Generalized Maximum Correntropy Criterion (GMCC) is used to replace the original mean square error (MSE) loss in BLS, is proposed to solve the problem of multiple outliers affecting the prediction accuracy of regional cluster stations, and it is called GBLS. Then, the Relevance Vector Machine (RVM) as an effective nonlinear regression model is further utilized to compensate for the prediction errors obtained by the GBLS to form the hybrid prediction model, namely GBLS-RVM. Moreover, to mitigate the uncertainty associated with scaling factors in traditional SU strategy, a new SU strategy is developed to refine the relationship between the reference station and the cluster sub-region, enabling direct modeling for regional power prediction. Finally, data from two PV clusters in different regions of China are used to validate the effectiveness of the proposed model, and the results show that under the improved SU strategy, the GBLS-RVM model, reduced RMSE by approximately 33.7% compared to the traditional BLS model, and the RMSE decreased by 12.89% and 30.2% when compared to traditional DA and traditional SU strategies.

Suggested Citation

  • Qiu, Lihong & Ma, Wentao & Feng, Xiaoyang & Dai, Jiahui & Dong, Yuzhuo & Duan, Jiandong & Chen, Badong, 2024. "A hybrid PV cluster power prediction model using BLS with GMCC and error correction via RVM considering an improved statistical upscaling technique," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001028
    DOI: 10.1016/j.apenergy.2024.122719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.