IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000990.html
   My bibliography  Save this article

MEBA: AI-powered precise building monthly energy benchmarking approach

Author

Listed:
  • Li, Tian
  • Bie, Haipei
  • Lu, Yi
  • Sawyer, Azadeh Omidfar
  • Loftness, Vivian

Abstract

Monthly energy benchmarking supports identifying trends, improving energy efficiency, and conducting cost management for building owners, managers, and policymakers better than annual or hourly benchmarking. Annual data cannot fully reflect operation utility status, and hourly data poses the issue of high-cost data mining and incomparability due to its minor scale. However, the primary challenges of monthly energy benchmarking are data limitation, “black-box” barrier, and building classification uncertainty. This study proposes a novel AI-powered Monthly Energy Benchmarking Approach (MEBA) to better assess building energy use patterns, benchmark end-use loads, and track utility bills. MEBA addresses two scenarios: (1) predict complete year-round monthly energy using partial monthly energy data; (2) estimate monthly energy loads from annual total energy data. The study collects monthly electricity and natural gas energy use from two U.S. cities. For the first scenario, the entire dataset is clustered into two primary groups by Gaussian Mixture Model (GMM). Then, the two groups are divided by Self-Organizing Map (SOM) models into five subclusters via energy use patterns. For the second scenario, an additional step is needed to locate the subcluster labels with advanced Light Gradient Boosting Machine (LGBM) classifications. All five subclusters have high prediction performance with an average accuracy of >95%. Both scenarios require the last stage to predict monthly electricity and natural gas by LGBM regressions. MEBA's prediction performance achieves R2s ranging from 0.50 to 0.73, with RMSEs between 0.15 and 2.35, outperforming the state-of-the-art XGBoost model. Each subcluster exhibits distinct energy use patterns, with EUIs, electricity loads, and year built as the most significant attributes.

Suggested Citation

  • Li, Tian & Bie, Haipei & Lu, Yi & Sawyer, Azadeh Omidfar & Loftness, Vivian, 2024. "MEBA: AI-powered precise building monthly energy benchmarking approach," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000990
    DOI: 10.1016/j.apenergy.2024.122716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.