IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000928.html
   My bibliography  Save this article

Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data

Author

Listed:
  • Hu, Zehuan
  • Gao, Yuan
  • Ji, Siyu
  • Mae, Masayuki
  • Imaizumi, Taiji

Abstract

Accurate predictions of photovoltaic power generation (PV power) are essential for the integration of renewable energy into grids, markets, and building energy management systems. PV power is highly susceptible to weather conditions. Therefore, as weather forecast accuracy improves, it has become increasingly important issue to effectively utilize weather forecast data to enhance prediction accuracy. In this study, an improved model that combines Long Short-Term Memory (LSTM) and self-attention mechanisms is proposed. Proposed model captures the time features through the LSTM network and the correlations among multivariate time series through the self-attention mechanism. Additionally, methods to efficiently integrate historical and forecast data into various time-series forecasting models are also proposed. To verify the effectiveness of the proposed method and the performance of the proposed model, an actual PV power data of a building in Japan is used for various types of experiments. The results demonstrate that the proposed method effectively leverages weather forecast data and enhances the prediction performance of all models, the coefficient of determination (R2) are improved 15.8% for LSTM model, and 26.4% for proposed model. Whether for short-term or long-term predictions, proposed model consistently provides superior accuracy, practicality, and adaptability across all output sequence lengths. Compared to the basic LSTM model, R2 on short-term and long-term forecasting increased by 3.9% and 22.5%, respectively.

Suggested Citation

  • Hu, Zehuan & Gao, Yuan & Ji, Siyu & Mae, Masayuki & Imaizumi, Taiji, 2024. "Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000928
    DOI: 10.1016/j.apenergy.2024.122709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.