IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000588.html
   My bibliography  Save this article

Theoretical exploration of a free-piston Stirling generator with a gas-compressing self-circulating heat exchanger

Author

Listed:
  • Luo, Jing
  • Sun, Yanlei
  • Zhang, Limin
  • Chen, Yanyan
  • Yu, Guoyao
  • Hu, Jianying
  • Luo, Ercang

Abstract

The free-piston Stirling generator (FPSG) holds great promise as a thermal-to-electrical conversion device for space applications. However, heat transfer remains a critical factor obstructing its scalability to high power levels. In this study, we propose a high-power FPSG with a gas-compressing self-circulating heat exchanger (GSHX) that utilizes high-pressure helium as the heat transfer fluid, enhancing the reliability of the heat exchanger. By incorporating a built-in gas-compressing device and check valves, the performance degradation caused by significant pressure fluctuations in the resonant self-circulating heat exchanger is effectively addressed. Through detailed simulations, we demonstrate the principle feasibility of the GSHX with a 4 m heat transfer loop, achieving an output electric power of 11 kW and a thermal-to-electric efficiency of 20.4%. Furthermore, the GSHX exhibits similar operating characteristics to traditional FPSGs, as we analyze the systems' stability under various operating conditions. Importantly, our findings reveal that the acoustic characteristics of the loop play a pivotal role in system performance, with operating parameters exhibiting periodic variations related to helium wavelength. By carefully optimizing system parameters, GSHX with a long loop length of 29 m can achieve comparable performance to systems with shorter loops. This study provides valuable insights into the operational characteristics and performance optimization of the GSHX, offering a comprehensive heat transfer solution for long-distance, high-efficiency, and highly reliable applications of high-power FPSGs in the space domain.

Suggested Citation

  • Luo, Jing & Sun, Yanlei & Zhang, Limin & Chen, Yanyan & Yu, Guoyao & Hu, Jianying & Luo, Ercang, 2024. "Theoretical exploration of a free-piston Stirling generator with a gas-compressing self-circulating heat exchanger," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000588
    DOI: 10.1016/j.apenergy.2024.122675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.