IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000576.html
   My bibliography  Save this article

Multifunctional F-doped TiO2 PCM microcapsules for visible-light-driven photocatalysis and latent heat storage

Author

Listed:
  • Zhao, Aiqin
  • Xiao, Xi
  • Hu, Zhong-Ting
  • Zhu, Weiping
  • Yang, Jinglei
  • Yang, En-Hua

Abstract

This paper presented the fabrication of a multifunctional microcapsule, integrating visible-light-driven photocatalysis and latent heat storage capabilities. The core-shell structure incorporated a phase change material in the core, facilitating latent heat storage. Meanwhile the shell was composed of fluorine-doped TiO2, enabling photocatalysis under visible light. Different from conventional fabrication methods necessitating stringent conditions, this study employed a synthesis approach viable at low temperatures (50–90 °C) and ambient pressure. The resulting microcapsule exhibited high photocatalytic capability under visible light, which was able to fully degrade organic dye within 7 h exposure to visible light. Parametric studies indicate photocatalytic efficiency was enhanced with reduced capsule size and elevated fabrication temperature. Optimal conditions were observed at a capsule size of 100 μm and a fabrication temperature of 90 °C. Furthermore, the microcapsule possessed a high thermal storage capacity of 99.4%, indicating the effectiveness of the shell in safeguarding the core material during the phase change process without compromising its energy storage capacity. Even after 100 h of exposure to visible light, the microcapsule demonstrated outstanding thermal stability and durability.

Suggested Citation

  • Zhao, Aiqin & Xiao, Xi & Hu, Zhong-Ting & Zhu, Weiping & Yang, Jinglei & Yang, En-Hua, 2024. "Multifunctional F-doped TiO2 PCM microcapsules for visible-light-driven photocatalysis and latent heat storage," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000576
    DOI: 10.1016/j.apenergy.2024.122674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.