IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000552.html
   My bibliography  Save this article

Radiative free cooling for energy and water saving in data centers

Author

Listed:
  • Aili, Ablimit
  • Long, Wenjun
  • Cao, Zhiwei
  • Wen, Yonggang

Abstract

Data centers consume large amounts of electricity and water specifically for cooling purposes. Integrating free cooling technologies is an essential part of broad efforts to reduce data centers' energy, carbon, and water footprints. Adding a new technique to the existing portfolio of free cooling technologies for data centers, we present how all-day passive radiative cooling can reduce energy and water consumptions of data centers. All-day passive radiative cooling is a free cooling technique, in which sky-facing surfaces with high solar reflectivity and midinfrared emissivity spontaneously reject heat into the sky, without consuming electricity and evaporating water. Using custom-built physics-based models, we simulate three configurations that integrate all-day radiative free cooling into data centers. We show that data center cooling energy and water consumptions differ substantially depending on the integration configuration. Particularly, direct free cooling of data center return air gives the highest energy saving with an annual average of around 20.0% under the tropical climate of Singapore which hosts a large number of data centers, whereas free cooling of compressed refrigerant prior to the chiller condenser gives the highest water saving with an annual average of around 84.0%. These results offer multiple viable options for integrating radiative free cooling into data center cooling systems to simultaneously achieve water and energy savings.

Suggested Citation

  • Aili, Ablimit & Long, Wenjun & Cao, Zhiwei & Wen, Yonggang, 2024. "Radiative free cooling for energy and water saving in data centers," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000552
    DOI: 10.1016/j.apenergy.2024.122672
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.