IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000497.html
   My bibliography  Save this article

Robust state-of-charge estimator for lithium-ion batteries enabled by a physics-driven dual-stage attention mechanism

Author

Listed:
  • Zhang, Kai
  • Bai, Dongxin
  • Li, Yong
  • Song, Ke
  • Zheng, Bailin
  • Yang, Fuqian

Abstract

The current deep state-of-charge (SOC) estimators face a challenge in extracting short-time-domain multi-scale features, which makes it difficult to capture important driving variables in multi-channel battery measurement features and invariant features in the time and frequency domains of the historical hidden states. This limitation leads to the tradeoff between the ability of the estimators to be trained at a lower cost and the higher error peaks and cumulative errors in the SOC estimation. A hybrid approach, which combines the physics-based characteristics of SOC changes with real-time measured data, is likely an effective solution to address this issue. In this work, we propose a novel SOC estimator, which is based on physics-driven dual-stage attention-based bidirectional recurrent neural network (PDA-BRNN). This estimator consists of two stages. In the first stage, the physics-driven input attention (PIA) mechanism synthesizes historical information and radial strains of the electrode particles of a battery, which are calculated via a physics-based analytical model, from numerous input channels. This synthesis helps identify the main driving variables and suppress local error peaks and cumulative errors in the estimation process. In the second stage, dual-temporal attention (DTA) mines, amplifies, and correlates effective time-varying information from different dimensions in the historical hidden states that benefits the current estimation process for reducing the error levels and improving the overall estimation accuracy. Experimental results demonstrate that the proposed PDA-BRNN is more accurate and robust than the state-of-the-art deep estimators under coherent multi-scale disturbances or Gaussian noise in measurements.

Suggested Citation

  • Zhang, Kai & Bai, Dongxin & Li, Yong & Song, Ke & Zheng, Bailin & Yang, Fuqian, 2024. "Robust state-of-charge estimator for lithium-ion batteries enabled by a physics-driven dual-stage attention mechanism," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000497
    DOI: 10.1016/j.apenergy.2024.122666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.