IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000424.html
   My bibliography  Save this article

Two-stage weakly supervised learning to mitigate label noise for intelligent identification of power system dominant instability mode

Author

Listed:
  • Shi, Zhongtuo
  • Yao, Wei
  • Zhao, Yifan
  • Ai, Xiaomeng
  • Wen, Jinyu
  • Cheng, Shijie

Abstract

Deep learning (DL) is effective in identifying the dominant instability mode (DIM) of power systems. However, regular supervised learning for training DL models requires a large number of training samples with accurate labels provided by power system experts, which is prohibitively costly in practice. To address this issue, this paper proposes a weakly supervised learning framework to train DL models for DIM identification based on cheap but potentially inaccurate (noisy) labels from non-expert engineers. The framework comprises two stages to mitigate the detrimental effects of label noise. At Stage I, an auxiliary model is proposed to intelligently detect detrimental noisy samples while preserving truly-labeled informative hard samples based on the entire training loss dynamics of base DL models. Then Stage II incorporates virtual adversarial training to utilize all samples, including noisy ones with labels removed, to train a smooth DIM identification model in a semi-supervised learning way. It can help further mitigate the effects of undetected label noise. Case studies are conducted on CEPRI 36-bus system and Northeast China Power System (2131 buses). The results verify that the proposed framework can tolerate high-intensity feature-(in)dependent label noise and build reliable DL models for DIM identification with significantly less reliance on experts.

Suggested Citation

  • Shi, Zhongtuo & Yao, Wei & Zhao, Yifan & Ai, Xiaomeng & Wen, Jinyu & Cheng, Shijie, 2024. "Two-stage weakly supervised learning to mitigate label noise for intelligent identification of power system dominant instability mode," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000424
    DOI: 10.1016/j.apenergy.2024.122659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.